• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evolution of the household vehicle fleet : anticipating fleet compostion, plug-in hybrid electric vehicle (PHEV) adoption and greenhouse gas (GHG) emissions in Austin, Texas

Musti, Sashank 20 September 2010 (has links)
In today’s world of volatile fuel prices and climate concerns, there is little study on the relation between vehicle ownership patterns and attitudes toward potential policies and vehicle technologies. This work provides new data on ownership decisions and owner preferences under various scenarios, coupled with calibrated models to microsimulate Austin’s household-fleet evolution. Results suggest that most Austinites (63%, population-corrected share) support a feebate policy to favor more fuel efficient vehicles. Top purchase criteria are vehicle purchase price, type/class, and fuel economy (with 30%, 21% and 19% of respondents placing these in their top three). Most (56%) respondents also indicated that they would seriously consider purchasing a Plug-In Hybrid Electric Vehicle (PHEV) if it were to cost $6,000 more than its conventional, gasoline-powered counterpart. And many respond strongly to signals on the external (health and climate) costs of a vehicle’s emissions, more strongly than they respond to information on fuel cost savings. 25-year simulations suggest that 19% of Austin’s vehicle fleet could be comprised of Hybrid Electric Vehicles (HEVs) and PHEVs under adoption of a feebate policy (along with PHEV availability in Year 1 of the simulation, and current gas prices throughout). Under all scenarios vehicle usage levels (in total vehicle miles traveled [VMT]) are predicted to increase overall, along with average vehicle ownership levels (per household, and per capita); and a feebate policy is predicted to raise total regional VMT slightly (just 4.43 percent, by simulation year 25), relative to the trend scenario, while reducing CO2 emissions only slightly (by 3.8 percent, relative to trend). Doubling the trend-case gas price to $5/gallon is simulated to reduce the year-25 vehicle use levels by 17% and CO2 emissions by 22% (relative to trend). Two- and three-vehicle households are simulated to be the highest adopters of HEVs and PHEVs across all scenarios. And HEVs, PHEVs and Smart Cars are estimated to represent a major share of the fleet’s VMT (25%) by year 25 under the feebate scenario. The combined share of vans, pickup trucks, sport utility vehicles (SUVs), and cross over utility vehicles (CUVs) is lowest under the feebate scenario, at 35% (versus 47% in Austin’s current household fleet), yet feebate-policy receipts exceed rebates in each simulation year. A 15% reduction in the usage levels of SUVs, CUVs and minivans is observed in the $5/gallon scenario (relative to trend). Mean use levels per vehicle of HEVs and PHEVs are simulated to have a variation of 753 and 495 across scenarios. In the longer term, gas price dynamics, tax incentives, feebates and purchase prices along with new technologies, government-industry partnerships, and more accurate information on range and recharging times (which increase customer confidence in EV technologies) should have even more significant effects on energy dependence and greenhouse gas emissions. / text
2

Analysis of Integration of Plug-in Hybrid Electric Vehicles in the Distribution Grid

Karnama, Ahmad January 2009 (has links)
The new generation of cars are so-called Plug-in Hybrid Electric Vehicles (PHEVs) which has the grid connection capability. By the introduction of these vehicles, the grid issues will be connected to the private car transportation sector for the first time. The cars from the gird perspective can be considered as a regular load with certain power factor. The effects of this type of new load in distribution grid are studied in this thesis. By modelling the cars as regular load, the effects of the cars in three distinct areas in Stockholm are investigated. The car number in each area is estimated based on the population and commercial density of electricity consumption in the three areas. Afterward, the average electricity consumption by the cars in one day is distributed among 24 hours of the day with peak load in the studied year. This distribution is done by two regulated and unregulated methods. The regulated method is based on the desired pattern of electricity consumption of PHEVs by vehicle owners. On the other hand, the regulated pattern is designed based on encouragement of the car owners to consume electricity for charging their car batteries at low-power hours of day (usually midnight hours). The power system from high voltage lines in Sweden down to 11 kV substations in Stockholm simulated in PSS/E software has been used in this study. The automation program (written in Python) is run in order to get the output report (voltage variation and losses) of the load flow calculations for different hours of day by adding the required power for PHEVs both by regulated and unregulated patterns. The results show the possibility of introducing growing number of cars till year 2050 in each area with existing grid infrastructures. Moreover, the number of cars, yearly and daily electric consumption for PHEVs in pure electric mode are shown in this project and the effects of regulated electricity consumption are investigated. It is concluded that since the car number is estimated based on the population, the areas with higher residential characteristics are more problematic for integration of PHEVs from capacity point of view. Moreover, by regulating the charging pattern of PHEVs, the higher number of PHEVs can be integrated to the grid with the existing infrastructures. In addition, the losses have been decreased in regulated pattern in comparison with unregulated pattern with the same power consumption. The voltage in different substations is within the standard boundaries by adding 100 percent of PHEVs load for both regulated and unregulated patterns in all three areas.

Page generated in 0.075 seconds