Spelling suggestions: "subject:"plutons"" "subject:"gloutons""
1 |
Geochemical and geochronological relationships between granitoid plutons of the Biga Peninsula, NW TurkeyBlack, Karen Naomi 20 July 2012 (has links)
The Aegean Sea is considered to be a classic back-arc basin. Back-arc basins may develop by active processes including retreat of the overriding plate or upwelling from the subducting slab. Alternatively, back-arc basins may develop as passive responses to regional tensional stresses. The Biga Peninsula of western Turkey provides an opportunity to explore and test these models. The Biga region is characterized by granitoid plutons of Cretaceous to Miocene age that may provide insight into the nature of extension. This study focuses on understanding the evolution of three of these plutons, the Kozak, Eybek, and Kestanbolu.
Geochemical and geochronological data and cathodoluminescence (CL) images of the rocks and zircons were acquired. The first in situ (in thin section) ion microprobe U-Pb ages of zircon, and the first zircon ages ever reported from the Kozak and Eybek plutons are presented. Zircon ages range from 36.5±6.6 Ma to 17.1±0.7 Ma (238U/206Pb, ±1) with two ages from a single grain of 280±18 Ma and 259±14 Ma. Samples from the Kozak and Eybek plutons are magnesian, calc-alkalic, and metaluminous, whereas the Kestanbolu rocks are magnesian, alkali-calcic, and metaluminous with one ferroan sample. The Rb vs. (Y+Nb) diagram suggests the Kozak and Kestanbolu plutons have a volcanic arc source, whereas the Eybek pluton records a within plate setting. CL imagery documents magma mixing, brittle deformation, and fluid- rock interactions based upon cracked plagioclase cores, cross-cutting microcracks, and fluid reaction textures of myrmekite and red rims on alkali feldspar.
The plutons were generated following the collision of the Sakarya continent with the Anatolide-Tauride block. Geochemical data suggest the Kozak and Kestanbolu granitoids were generated by fluid flux melting from dehydration of the subducting slab of the Anatolide-Tauride block. The Kestanbolu granitoid intruded into the Vardar Suture north of this collision, whereas the Eybek pluton was created within the lithosphere during exhumation of the Kazdağ Massif. The Eocene - Oligocene zircon ages indicate emplacement and initial crystallization of the plutons. Early Miocene ages indicate ongoing extension in the region at this time and are consistent with earlier interpretations that subduction slab roll-back along the Hellenic arc formed the extensional environment in the region at this time. / text
|
2 |
Groundwater Flow Systems and Thermal Regimes Near Cooling Igneous Plutons: Influence of Surface TopographyBirch, Mark U. 01 May 1989 (has links)
Previous studies of cooling igneous plutons did not consider the possible influence of sloping surface topography. Topographically-driven fluids in high relief terrain, however, are thought to interact with deep buoyancy-driven fluids to produce large lateral-flow systems up to 5 km long and 20 km long in silicic and andesitic volcanic terrain, respectively. In this study, a quantitative investigation of the interaction of topographically-driven and buoyancy-driven fluid flow is conducted through the use of a finite element numerical model to simulate the fluid flow and thermal regimes associated with a cooling igneous pluton in the presence of significant topographic relief. The system considered in this study is that of a pluton with dimensions 2 km by 3 km and an initial temperature of 980 °C centered beneath a mountain having relief of 1 km over a horizontal distance of 3 km. Simulation results indicate that the topographic component of flow interacts with buoyancy to produce two separate flow systems, a shallow topographically-driven flow system and a deeper convecting system. The resulting hydrothermal system evolves in a more complicated fashion than in flat topography cases. In addition, the existence of the shallow topographically-driven flow system partially masks the presence of the heat source by preventing fluids having the chemical signature of the deeper, hotter environment from reaching the surface. Cooling rate of the pluton is also increased and boiling is inhibited. These effects, however, are primarily a result of the pluton being injected into a cooler host rock. The host rock is cooler in the sloping topography case due to advective cooling prior to pluton injection. Model results also indicate that temperature beneath the mountain and the position of the zone of mixing remain relatively constant for almost 50,000 years. The stability of the temperature conditions and the position of the zone of mixing may increase the likelihood for the deposition of epithermal ore bodies in this region.
|
3 |
U/Pb Zircon Ages of Plutons from the Central Appalachians and GIS-Based Assessment of Plutons with Comments on Their Regional Tectonic SignificanceWilson, John Robert 08 October 2001 (has links)
The rocks of the Appalachian orogen are world-class examples of collisional and extensional tectonics, where multiple episodes of mountain building and rifting from the pre-Cambrian to the present are preserved in the geologic record. These orogenic events produced plutonic rocks, which can be used as probes of the thermal state of the source region. SIMS (secondary ion mass spectrometry) U/Pb ages of zircons were obtained for ten plutons (Leatherwood, Rich Acres, Melrose, Buckingham, Diana Mills, Columbia, Poore Creek, Green Springs, Lahore and Ellisville) within Virginia. These plutons are distinct chemically, isotopically, and show an age distribution where felsic rocks are approximately 440 Ma, and Mafic rocks are approximately 430 Ma. Initial strontium isotopic ratios and bulk geochemical analyses were also performed. These analyses show the bimodal nature of magmatism within this region.
In order to facilitate management of geologic data, including radiometric ages, strontium isotope initial ratios and major element geochemistry, a GIS based approach has been developed. Geospatially references sample locations, and associated attribute data allow for analysis of the data, and an assessment of the accuracy of field locations of plutons at both regional and local scales. The GIS based assessment of plutons also allows for the incorporation of other multidisciplinary databases to enhance analysis of regional and local geologic processes. Extending such coverage to the central Appalachians (distribution of lithotectonic belts, plutons, and their ages and compositions) will enable a rapid assessment of tectonic models. / Master of Science
|
4 |
Magmatic evolution and crustal accretion in the early proterozoic : the geology and geochemistry of the Narsajuaq Terrane, Ungava Orogen, Northern QuebecDunphy, Janet M., 10 1900 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal. / L'évolution géochimique de la terre doit être abordée par l'étude de sections crustales et de réservoirs mantelliques de différentes compositions à différentes époques géologiques. Ce type de travail doit se concentrer sur révolution d'une suite de roches d'un âge particulier et la comparer ensuite avec des suites d'autres époques géologiques. Le travail présenté dans cette thèse de doctorat se focalise sur des séquences du Protérozoique inférieur (1.8 - 2.0 Ga). Cette époque représente une importante période d'accrétion et de croissance globale des boucliers continentaux. Les articles présentés dans cette thèse traitent de révolution magmatique, ainsi que de 1'accrétion crustale à l'intérieur de l'Orogène de l'Ungava (nord du Québec) d'âge Protérozoïque inférieur. Caractériser la composition de la croûte continentale est essentiel pour comprendre révolution géochimique de la terre. Cet aspect est l'objet du premier chapitre de la thèse, ce dernier décrivant la géologie et la géochimie du terrane de Narsajuaq. Ce terrane représente la racine d'un complexe magmatique d'arc du Protérozoïque inférieur soudé à la marge de la Province du Lac Supérieur vers 1.82 Ga. Le terrane de Narsajuaq est constitué de quatre suites plutoniques différentes couvrant à elles seules plus de 150 Ma d'activité magmatique. Les plutons les plus âgés du terrane de Narsajuaq se trouvent dans la suite "Cape Smith". Celle-là contient des intrusions représentant plus de 60 Ma d'activité plutonique, de 1898 à 1839 Ma. Les plutons de la suite "Cape Smith" sont de composition dioritique, tonalitique et granitique, d'affinités essentiellement calco-alcalines, avec quelques échantillons tholéiitiques. Des enrichissements faibles à modérés de LILE (les éléments hygromagmatophile) et de terres rares, ainsi que des anomalies négatives de Nb et Ti caractérisent ces plutons. La signature isotopique de cette suite est bien définie avec e^ inidal = +3.2 à +1.5 et un rapport 87Sr/86Sr, de 0.7020 - 0.7024. Les plutons de cette suite ont été formés par fractionnement d'une source mantellique légèrement enrichie en LILE et terres rares légères, accompagnée d'une faible composante de contamination crustale attribuée à la subduction de sédiments. Ces plutons recoupent surtout la croûte océanique mafique des Groupes de Watts, Parent et Spartan. La suite dominante du terrane de Narsajuaq, nommée "Older suite", est formée d'une séquence rubanée de dionte-tonalite-granite. Cette séquence présente des concentrations plus élevées et plus variables de LILE et de terres rares que la suite "Cape Smith". Les compositions isotopiques de la "Older suite" sont aussi plus variables que celles de la suite "Cape Smith", avec un e^ initial de +4.0 à -10.7 et un rapport 87Sr/86Sr, de 0.7025 - 0.7048. La "Older suite", mise en place de 1863 à 1844 Ma, est en partie contemporaine de la suite "Cape Smith", n’est postulé que la "Older suite" a été formée sur un fragment de croûte continentale archéene ayant interagi avec des magmas ascendants, produisant ainsi le large spectre de signatures géochimiques et isotopiques observé. Une série de plutons homogènes de tailles kilométriques recoupe la "Older suite" et constitue la suite nommée "Younger suite". Ces plutons ont été mis en place principalement de 1836 à 1821 Ma, avec une série plus jeune se présentant sous forme d'épanchements granitiques très étendus datant de 1803 -1800 Ma. La "Younger suite", composée de plutons de diorite, tonalité et granité, a une signature isotopique et géochimique similaire à la "Older suite". Cependant, les valeurs de e^ initial et de 87Sr/^ Sr, varient plus largement dans la "Younger suite". Ces deux suites de roches semblent avoir une une pétrogénèse et une évolution globalement similaire. Une série distincte de plutons de monzodiorite située presque exclusivement dans la "Younger suite", contient des concentrations très élevées de LILE et de terres rares légères, et a des patrons de terres rares très fractionnés. La fusion pardelle d'une source mantellique enrichie peut expliquer leur signature géochimique. Nous suggérons que la fusion partielle résulte de la délamination d'une plaque subductée, combinée à la remontée de manteau asthénosphénque. Ce dernier aurait été modifié par la subduction, après une0 vil inversion de la géométrie de la zone de subduction entre 1844 et 1836 Ma. Les plutons granitiques les plus jeunes de la "Younger suite" (IVUJ et CNF) contiennent de fortes concentrations de LILE et de terres rares légères. Ils ont des compositions isotopiques qui indiquent un apport significatif d'une composante cmstale (e^d = -4.9 à -6.2 (FVUJ) et -17.5 à -18.5 (CNF)). Ces granites furent mis en place durant les étapes tardives de l'accrétion de l'arc magmatique sur la marge de la Province du Lac Supérieur. Leur generation est attribuée à la fusion partielle de la croûte, causée par l'épaississement tectonique et par l'inïïux de fluides au métamorphisme rétrograde subi par la croûte. La suite nommée "Late suite" se compose d'une série de dykes de syénogranite pegmatitique non-métamorphisés et non-déformés. Ceux-ci recoupent toutes les unités de l'orogène ainsi que de rares plutons granitiques situé essentiellement dans le terrane de Narsajuaq. Cependant, il est à noter que seul un pluton granitique recoupe toute les unités tectono-stratigraphiques. Les dykes de pegmatite ont été mis en place il y a 1758 Ma, alors que les plutons granitiques semblent légèrement plus jeunes, un pluton ayant été daté à 1742 Ma. Une étude géochronologique détaillée de ce pluton (pluton du Lac Duquel) est l'objet du chapitre 4. Cette étude, effectuée à l'aide de la technique de l'abladon par laser ICP-MS, a permis l'identification de zircons hérités, ayant des âges de 1.7 à 3.2 Ga. Plus de 80% de ces âges correspondent à ceux des roches environnantes. Cette étude géochronologique illustre le potentiel de la méthode d'analyse de l'ablation par laser ICP-MS pour déterminer l'histoire crustale d'un pluton granitique. Les données géochimiques, isotopiques et géochronologiques des plutons de la "Late suite" indiquent que l'anatexie crustale est le principal mécanisme ayant produit ces plutons. J Une section crustale composite de 15-20 km d'épaisseur du terrane de Narsajuaq est présenté. Les roches platoniques et sédimentaires de Narsajuaq représentent une section de profondeur intermédiaire d'une croûte d'arc magmatique du Protérozoique inférieur. La parde supérieure de la section crustale est manquante. Cependant, les roches volcaniques du Groupe de Parent pourraient représenter cette dernière. Les métasédiments du Groupe de Sugluk, ainsi que les grandes intrusions granitiques, sont plus abondants vers le sommet de la section crustale, alors que les plutons mafiques sont plus communs vers la base de la section. La détermination de la composition géochimique composite du terrane de Narsajuaq est en cours. Le but est de comparer la composition globale de cette croûte du Protérozoïque inférieur avec des sections de croûtes archéennes et phanérozoïques, afin d'évaluer les variations géochimiques séculaires, au cours du Précambrien principalement, et un particulier à la transition Archéen-Protérozoïque. Une décroissance du rapport (La/Yb)n et un appauvrissement global des terres rares lourdes documentées dans les roches post-Archéennes sont corroborées par les données de la présente étude. Ces variations résulteraient d'un changement fondamental du processus de génération magmatique, allant de la fusion de plaques subductées jusqu'à la fusion du manteau sus-jacent, conséquences du refroidissement séculaire de la terre. Nous désirons poursuivre l'investigation de ces variations géochimiques temporelles pour pouvoir, entre autres, évaluer la signification de la transition Protérozoïque-Archéen. <J Une évaluation des réservoirs mantelliques présents durant la formation des roches de l'Orogène de l'Ungava est l'objet du chapitre 3. Le rifting du socle de la Province du Lac Supérieur, vers 2.04 Ga, a conduit au développement d'une séquence de marge de rift volcanique et d'un bassin océanique caractérisés par de volumineux épanchements magmatiques. Quatre suites distinctes de roches volcaniques furent mises en places durant plus de 100 Ma, reliées à la présence de différents manteaux et réservoirs crustaux (manteau appauvri, manteau enrichi et croûte continentale). Les suites associées avec le rifting continental et le développement d'une marge volcanique incluent: (l) les basaltes continentaux contaminés par la croûte de la Formation Eskimo et du Groupe de Povungnituk occidental et central; (2) les laves mafiques de la Formation de Flaherty, du Groupe de Povungnituk oriental et certaines laves du Groupe de Watts qui ont une signature géochimique et isotopique légèrement enrichie; et (3) les laves alcalines de Povungnituk, hautement enrichies. Durant le développement d'un bassin océanique, un quatrième groupe a été mis en place, comprenant des basaltes magnésiens et des basaltes komatiitiques du Groupe de Chukotat, Des d'Ottawa et quelques échantillons du Groupe de Watts qui ont des compositions géochimiques et isotopiques similaires aux N-MORB. La gamme de compositions magmadques des roches mises en place durant l'événement de rifting et de génération du bassin océanique, procure une fenêtre du manteau à 2.0 Ga et nous permet de définir les compositions des réservoirs mantelliques: pour le manteau appauvri (e^ = +4.5 à +5.5); et pour le manteau enrichi (e^ = +2.5 à +3.5). Le rifting continental peut être associé, ou être contemporain, à l'arrivée d'un diapù- mantellique ayant donné naissance au Groupe de Povungnituk ainsi qu'aux formations d'Eskimo et de Flaherty. La fusion à l'intérieur du diapir mantellique pourrait avoir produit la signature de manteau enrichi des roches, avec contamination crustale superposée à la formation d'Eskimo et au Groupe de Povungnituk occidental. La rupture complète de la croûte a abouti à l'ouverture d'un bassin océanique, dans lequel les Groupes de Watts, de Chukotat et les Iles Ottawa ont été déposés. La plupart de ces roches ont été dérivées du réservoir mantellique appauvri. Cependant le Groupe de Watts contient des laves ayant des caractéristiques de manteau appauvri et enrichi, indiquant l'existence synchrone de ces réservoirs. Un réservoir additionnel qui a servi de source au magmatisme de type arc a aussi été documenté, sur la base des compositions géochimiques et isotopiques des magmas les plus primitifs du terrane de Narsajuaq. Ce réservoir a une composition isotopique de Nd similaire au manteau appauvri. L'étude plus approfondie des différents magmas du terrane de Narsajuaq, présentée au chapitre 2, suggère qu'un réservoirs mantellique enrichi a aussi été impliqué dans la génération des magmas de type arc, c'est à dire dans la formation des monzodiorites de la "Younger suite". Cependant, il est postulé que cet enrichissement était de nature locale, directement relié aux processus de subduction actifs en ce temps. Les similarités chimiques et isotopiques entre les magmas protérozoïques étudiés ici et les magmas contemporains suggèrent que l'interaction entre manteau appauvri, manteau OIB et manteau sub-continental pendant le Protérozoïque est semblable à la situation actuelle. Les processus magmatiques sont donc continus au cours du temps. L'existence de ces réservoirs mantelliques il y a 2.0 Ga, indique de plus que les processus tectoniques et géochimiques responsables de leur origine existaient déjà en ce temps. Le recyclage manteau-croûte aurait donc été actif il y a plus de 2.0 Ga.
|
5 |
Sm-Nd isotope, major element, and trace element geochemistry of the Nashoba terrane, eastern MassachusettsKay, Andrew January 2012 (has links)
Thesis advisor: Christopher J. Hepburn / The Nashoba terrane in eastern Massachusetts comprises Cambrian-Ordovician mafic to felsic metavolcanic rocks and interlayered sediments metamorphosed during the mid-Paleozoic and intruded by a series of dioritic to granitic plutons during the Silurian to earliest Carboniferous. This work comprises two parts discussing the Sm-Nd isotope characteristics and major and trace element geochemistry of the Nashoba terrane: the first discusses the Cambrian-Ordovician metamorphosed units, the second discusses the Silurian-Carboniferous plutons. Part I: The Nashoba terrane in eastern Massachusetts lies between rocks of Ganderian affinity to the northwest and Avalonian affinity to the southeast. Its relationship to either domain was unclear and has been investigated. Major and trace element geochemical data indicate a mix of arc, MORB, and alkaline rift related signatures consistent with an origin of the terrane as a primitive volcanic arc-backarc complex built on thinned continental crust. Newly determined Sm-Nd isotopic data clarifies the original tectonic setting. Amphibolites of the Marlboro and Nashoba Formations have high εNd values (+4 to +7.5) consistent with formation in a primitive volcanic arc with minimal interaction between arc magmas and crust. Intermediate and felsic gneisses have moderate εNd values between +1.2 and –0.75 indicating a mixture of juvenile arc magmas and an evolved (likely basement) source. Depleted mantle model ages of 1.2 to 1.6 Ga indicate a Mesoproterozoic or older age for this source. Metasedimentary rocks have negative εNd values between –6 and –8.3 indicating derivation primarily from an isotopically evolved source (or sources). The model ages of these metasedimentary rocks (1.6 to 1.8 Ga) indicate a source area of Paleoproterozoic or older age. The εNd values and model ages of the intermediate and felsic rocks and metasedimentary rocks indicates that the basement to the Nashoba terrane is Ganderian rather than Avalonian. The Nashoba terrane therefore represents a southward continuation of Ganderian arc-backarc activity as typified by the Penobscot and/or Popelogan-Victoria arc systems and the Tetagouche-Exploits backarc basin in the northern Appalachians. Part II: Between 430 and 350 Ma the Nashoba terrane experienced episodic dioritic and granitic plutonism. Previous workers have suggested a supra-subduction zone setting for this magmatism based on the calc-alkaline nature of the diorites. Previously determined major and trace element geochemical data along with newly determined Sm-Nd isotopic data indicate that a subduction zone was active beneath the Nashoba terrane during the majority of the 430 to ca. 350 Ma magmatism (and likely throughout). Trace element geochemistry indicates a strong arc component in all magmas and suggests that the various Silurian to Carboniferous plutonic rocks of the Nashoba terrane could all have been derived by modification of a slightly enriched NMORB-type source via subduction zone input and crustal contamination. Most of the rocks from this period have intermediate εNd values consistent with contamination of juvenile magmas by an evolved source. The late Proterozoic model ages for most of these rocks suggest the Ganderian basement of the Nashoba terrane as the source of evolved material. One rhyolite from the nearby Newbury Volcanic Complex (of unknown affinity) has a moderately negative εNd value consistent with derivation by partial melting of Cambrian-Ordovician metasedimentary rocks of the Nashoba terrane. This suggests that the Newbury Volcanic Complex formed as the surface expression of mid-Paleozoic Nashoba terrane plutonism. Geochemical and isotopic similarities between the plutonic rocks of the Nashoba terrane and widespread contemporary Ganderian plutonism suggest that the Nashoba terrane remained a part of Ganderia during its transit and accretion to the Laurentian margin. Significantly younger model ages in the youngest granitic rocks indicate that Avalonian crust may have underthrust the Nashoba terrane after 400 Ma and contributed to the generation of these granites. / Thesis (MS) — Boston College, 2012. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.
|
6 |
Mecanismos de alojamento e deformação da fácies albita granito do plúton madeira, Mina Pitinga (AM)Velandia, Astrid Siachoque 10 August 2015 (has links)
Submitted by Geyciane Santos (geyciane_thamires@hotmail.com) on 2015-10-26T14:33:03Z
No. of bitstreams: 1
Dissertação - Astrid Siachoque Velandia.pdf: 17537751 bytes, checksum: 68db1c723dbe1e10240313c80e2e5ce9 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-10-26T17:54:01Z (GMT) No. of bitstreams: 1
Dissertação - Astrid Siachoque Velandia.pdf: 17537751 bytes, checksum: 68db1c723dbe1e10240313c80e2e5ce9 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-10-26T18:11:18Z (GMT) No. of bitstreams: 1
Dissertação - Astrid Siachoque Velandia.pdf: 17537751 bytes, checksum: 68db1c723dbe1e10240313c80e2e5ce9 (MD5) / Made available in DSpace on 2015-10-26T18:12:48Z (GMT). No. of bitstreams: 1
Dissertação - Astrid Siachoque Velandia.pdf: 17537751 bytes, checksum: 68db1c723dbe1e10240313c80e2e5ce9 (MD5)
Previous issue date: 2015-08-10 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The albite granite is the latter facies of the A-type Madeira granite with alkaline affinity, which is a special Orosirian pulse of the A-type magmatic event in the Tapajós-Parima Province into Amazon craton. This facies is subdivided in two subfacies, the core albite granite and the border albite granite. The petrographic study allowed identify that the principals constituent minerals of the magmatic phase in these rocks undergone weak solid-state deformation, in which it is found locally feldspars with grain boundary migration, undulate extinction and mechanical twinning, as well as, some elongate crystals of quartz displaying typical chessboard pattern with slip planes preferably in the a-axes, dynamic recrystallization, subgrain rotation and inclusions of albite according to the limits of the crystals. These microstructures in granitic rocks indicate strain rates under intermediated to high temperatures. Geometric and kinematic analysis of the structures in the albite granite showed that: this granitic rock was deformed during a magmatic stage recording the S0 magmatic foliation, which was grouped in two orientations: N67°W/52°E e S79°W/58°N (predominant). The anisotropy of magnetic susceptibility and shape preferred orientation study, confirm the stability of the primary deformation in the albite granite, these results revealed predominantly subcoaxial magnetic and mineral fabrics in both subfácies. Subsequently, the albite granite was affected by brittle deformation through of transcurrent shear zones (ZCA-B) with plunges S70°W/56°N and S23°E/58°W respectively, and dominant dextral strike-slip component associated with the principal shear zone ZCA, as well as, normal faulting (FR) with prevailing attitude S60°E/58°S and normal-sense movement. The progressive petrological evolution and continue structural pattern of the albita granite facies with respect to earlier facies of Madeira granite, define that the emplacement in the upper crust of the different pulses in this granite, was result of nested pluton process controlled by NE-SW trending strike-slip system and predominantly dextral kinematics, which is an expression of regional deformation. / A fácies Albita granito é a fácies mais tardia do granito Madeira de afinidade alcalina a qual é um especial pulso do magmatismo tipo A que se desenvolveu de forma expressiva no período Orosiriano na província Tapajós-Parima no cráton Amazônico. Esta fácies se subdivide em duas subfácies: Albita granito de núcleo e Albita granito de borda. O estudo petrográfico permitiu identificar que os minerais constituintes da fase magmática destas rochas apresentam localmente feições de deformação plástica, cristais de K-feldspato e albita com limites lobados por migração de borda, extinção ondulante e geminação mecânica, assim como fenocristais de quartzo exibindo extinção ondulante em padrão de tabuleiro de xadrez com planos de deslizamento preferencialmente no eixo <a>, recristalização dinâmica, rotação de subgrãos e inclusões de albita e alinhadas segundo os limites dos cristais. Estas microestruturas em rochas graníticas indicam taxas de deformação sob temperaturas intermediárias. Análises geométrica e cinemática das estruturas levantadas em campo nas subfácies do Albita granito, comprovaram que localmente a rocha se deformou ainda num estágio magmático, registrando foliação magmática S0, agrupada em duas orientações: N67°W/52°E e S79°W/58°N (predominante). Os resultados do estudo de anisotropia de susceptibilidade magnética e orientação preferencial de forma avaliam localmente a estabilidade da petrotrama dúctil medida em afloramento e registram tramas magnética e mineral predominantemente subparalelas nas duas subfácies. Posteriormente, o Albita granito foi deformado rúptilmente por zonas de cisalhamento transcorrentes (ZCA-B) orientadas S70°W/56°N e S23°E/58°W, com cinemática dextral dominante associada ao cisalhamento principal ZCA, e por falhamento normal (FR) com atitude predominante S60°E/58°S, sob os efeitos de um campo regional de esforços que se manteve estável durante sua cristalização e deformação. A progressiva evolução petrológica e continuo padrão estrutural da fácies Albita granito com respeito às fácies mais precoces do granito Madeira refletem que o alojamento dos diferentes pulsos magmáticos deste granito na crosta superior, ocorreu associado com processos de nested plutons controlados por um contexto regional de deformação transcorrente com trend NE-SW e cinemática dextral predominante.
|
7 |
Etude des effets de la solidification sur les intrusions de type sill : application à la croissance plutonique / Solidification effects on sill intrusion : application to pluton growthChanceaux, Lola 14 October 2016 (has links)
Il est maintenant avéré que la plupart des grands corps magmatiques sont construits par amalgamation d’intrusions plus petites. Ces incréments sont pour la plupart des sills, qui sont considérés comme les briques élémentaires des corps magmatiques plus grands. Malgré de nombreuses études, certains aspects de la mise en place des plutons sont encore mal compris : aucun modèle ne contraint leur taille et on ne sait toujours pas comment l’encaissant se déforme lors de leur mise en place incrémentale. La taille des réservoirs magmatiques, construits par injections répétées de magma, dépend de la taille des sills qui le constituent, et notamment de l’extension latérale de ces sills. Cette extension latérale pourrait être contrôlée par la solidification du magma lors de la mise en place du sill. Des expériences analogiques de laboratoire ont donc été réalisées afin de quantifier les effets de la solidification sur 1) la formation des sills et 2) la dynamique de propagation, la géométrie et la taille des sills. De l’huile végétale chaude, analogue du magma se solidifiant lors de sa propagation, est injectée dans un solide de gélatine plus froid, analogue des roches encaissantes. Le premier set d’expérience montre qu’avec l’augmentation des effets de la solidification, différents types d’intrusions sont observés (dykes traversant l’interface, sills et dykes stoppés à l’interface). Contrairement à des expériences où le refroidissement ne peut pas affecter la formation des sills, la présence d’une interface a priori mécaniquement favorable n’est donc pas suffisante pour former un sill ; les effets de la solidification restreignent la formation des sills. Le second set d’expérience montre deux comportements extrêmes pour la dynamique de propagation et la géométrie des sills. Quand les effets de la solidification sont faibles, la propagation du sill est continue et leur surface est lisse et régulière. A l’inverse, quand les effets sont forts, la propagation est discontinue et la géométrie des sills est complexe (e.g. lobes et surfaces cordées). De plus, des effets de la solidification plus importants entraînent des surfaces de sills plus faibles : en restreignant l’extension latérale des sills, le refroidissement du magma et la solidification sont susceptibles d’impacter directement la taille des plutons construits par amalgamation de sills. Les grandes déformations induites par la mise en place incrémentale des plutons sont encore mal comprises. Les modèles actuels négligent généralement les rhéologies cassantes et plastiques observées sur le terrain. Dans un premier temps, une mission de terrain dans les Henry Mountains (Utah, USA) a été réalisée afin de mieux comprendre les déformations entourant trois intrusions de tailles différentes : le Maiden Creek Sill, le Trachyte Mesa Laccolith et le Black Mesa Bysmalith. L’intensité de la déformation, la réduction de porosité et l’augmentation de microstructures liées à une forte déformation sont positivement corrélées. L’intensité de ces paramètres augmente à l’approche du contact encaissant / intrusion, et est plus marquée pour les contacts latéraux que pour les contacts supérieurs et inférieurs. Plus la taille de l’intrusion est importante, plus l’encaissant situé sur les côtés est déformé sur une grande distance. En revanche, la déformation observée au sommet du bysmalite est peu étendue, ce qui est dû à la présence d’une faille ayant permis une translation de l’encaissant plutôt que sa déformation importante. Dans un deuxième temps, des expériences analogiques de laboratoire multi-injections ont été effectuées pour essayer de mieux caractériser ces déformations. Ces expériences permettent d’observer la création d’un corps principal constitué de plusieurs sills empilés les uns sur les autres, par sur ou sous-accrétion. L’extension latérale de ce corps principal est fortement contrainte par la taille du premier sill mis en place. (...) / It is now accepted that the majority of large magma bodies is constructed by amalgamation of smaller magmatic intrusions. These increments are mostly sills and are thought as building blocks for larger magma bodies. Despite numerous studies, some aspects of their emplacement are still misunderstood: no model exists to constrain the size of plutons and we still do not know how the host rock is deformed during their incremental emplacement. The size of magma reservoirs, constructed by repeating magma pulses, depends on the size of the sills that built them, especially the lateral extend of these sills. This lateral extend could be controlled by solidification during sill emplacement. Analogue experiments have thus been carried out to quantify the effects of magma solidification on 1) sill formation and 2) sill propagation dynamics, geometry and size. Hot liquid vegetable oil, the magma analogue that solidifies during its propagation, is injected in a layered colder gelatine solid, the host rock analogue. A first set of experiments shows that as solidification effects increase, several types of intrusions are observed (dykes passing through the interface, sills, and dykes stopping at the interface). Contrary to isothermal experiments, where cooling cannot affect sill formation, the presence of an interface that would be a priori mechanically favorable is not a sufficient condition for sill formation; solidification effects restrict sill formation. A second set of experiments shows two extreme behaviours for sill propagation dynamics and geometry. When solidification effects are small, the propagation is continuous and sills have a regular and smooth surface. Conversely, when solidification effects are important, sill propagation is discontinuous and their geometry is complex (e.g. lobes and ropy structures). Moreover, higher solidification effects induce smaller sill surfaces; in restricting the lateral extent of sills, magma cooling and solidification are likely to impact directly the size of plutons constructed by amalgamated sills. The large deformations induced by incremental pluton emplacement are still misundurstood. Current models usually neglect brittle and plastic rheology, which are observed in the field. Firstly, a field study has been realized in the Henry Mountains (Utah, USA), in order to better understand the deformations around three intrusions of increasing size: the Maiden Creek Sill, the Trachyte Mesa Laccolith and the Black Mesa Bysmalith. The intensity of the deformation, the porosity reduction and the augmentation of microstructures related to large deformation are positively correlated. The intensity of these parameters increases as one gets closer to the host rock / intrusion contact, and is more important for lateral contacts than upper ones. Larger intrusions induce lateral deformation of the host rock over larger distances. However, the deformation at the top of the bysmalith is localized because of a fault allowing the translation of the host rock instead of an intense deformation. Secondarily, analogue laboratory experiments involving multiple injections have been carried out in order to better understand these deformations. The creation of a main body, made of multiple stacked sills emplaced by under or over-acretion can be observed. The lateral extent of this main body is highly dependant on the size of the first sill emplaced. However, the experimental dificulties and the mechanical properties of the gelatine as a crustal analogue limit the usefulness of these experiments.
|
8 |
Magma, Mass Spectrometry, and Models: Insights into Sub-Volcanic Reservoirs and the Processes that Form ThemDisha Chandrakan Okhai (18403560) 19 April 2024 (has links)
<p dir="ltr">To better predict volcanic behavior, we must understand the processes that occur in the underlying magma reservoirs. This thesis contains three chapters that work together to better understand processes that occur in sub-volcanic reservoirs. Chapter 2 is a study of an ancient, coupled volcanic-plutonic system to determine the link between the volcanic and plutonic parts of the system. The IXL-Job Canyon magmatic system is an ~28-29 Ma system, which shows a rapid transition between eruption of tuffs and lava flows to construction of an upper-crustal pluton, via incremental emplacement. The system experienced an eruptive hiatus during and after pluton construction, until the eruption of a newly identified, younger, rhyolitic tuff. This work suggests that the absence of volcanic activity at the surface does not mean that the underlying magmatic plumbing system is also inactive. Chapter 3 compiles existing U-Pb zircon ID-TIMS data for upper-crustal, silicic magmatic systems, to determine the size and frequency of magmatic increments that accumulate to build up these systems. A Monte Carlo-based model is used to investigate the underlying distributions of the increment size and time between increments, and results in sizes and inter-event times that follow an exponential distribution. This work helps guide how we can try to introduce broadly generalizable complexities into thermal models of such systems. Chapter 4 focuses on organic interferences, a common issue that impacts the speed and quality of U-Pb and Pb-Pb data collected on TIMS instruments. We share two techniques used at the Purdue Radiogenic Isotope Geology Lab to first reduce and then avoid any residual organic interferences. These techniques help shorten analytical times, increasing throughput, and provide a means to reduce uncertainties on our measurements, since the presence of organic interferences can bias and increase the uncertainties on U-Pb dates.</p>
|
Page generated in 0.044 seconds