Spelling suggestions: "subject:"dod"" "subject:"ood""
211 |
Vývoj a využití zobrazovacích metod v blízkém poli v terahertzové spektrální oblasti / Development and applications of near-field imaging methods in the terahertz spectral domainBerta, Milan January 2011 (has links)
We are reporting on a study of the near-field sensitivity and resolution of a metal-dielectric probe (MDP). The propagation of the electromagnetic field across the probe was studied experimentally by means of time-domain terahertz spectroscopy and numerically simulated by CST MicroWave Studio 2008. Several localised areas at the probe end facet were distinguished and showed to be sensitive to the local dielectric properties and local anisotropy of the sample. Contrast and sensitivity measurements were conducted in several configurations of a MDP; the results were confirmed by simulations. The acquired data were analysed by using singular value decomposition that enabled separating independent physical phenomena in the measured datasets and filtering external disturbances out of the signal. Independent components corresponding to the changes in the output terahertz pulse upon varying the probe-sample distance and reflecting the local anisotropy in a ferroelectric barium titanate (BaTiO3) crystal were extracted and identified. The domain structure with characteristic dimensions of about 5 um was resolved during imaging experiments on the ferroelectric BaTiO3 sample, i.e. the resolved structures were ten times smaller than the characteristic dimensions of the end facet of the probe and forty times smaller than...
|
212 |
Generel bezbariérových tras v Bystřici pod Hostýnem / Generel plan of barrier-free routes in Bystrice pod HostynemBakalová, Lucie January 2022 (has links)
The principal theme of this diploma thesis is a development of Generel for barrier-free routes in Bystřice pod Hostýnem. The thesis focuses on familiarization with a group of people with limited movement and orientation abilities, their comfortable and safe usage of road constructions and public spaces. Theoretical interpretation of this diploma thesis is based on the bylaw No. 398/2009 Coll., on general technical requirements ensuring barrier-free use of the buildings. Theoretical part of the thesis continues by familiarization with the way of movement and orientation of people with limited movement and orientation abilities and their use of features used to simplify pedestrian transportation in the city. The practical part of the thesis is focused on development of proposal for routes connecting important objects of civil amenities in the city of Bystřice pod Hostýnem. Practical part also provides valuation of current status of existing routes and their proposed changes to achieve compliance with bylaw No. 398/2009 Coll., to ensure the maximum safety of barrier-free routes in the city.
|
213 |
Bayesovský přístup k určování akustických jednotek v řeči / Discovering Acoustic Units from Speech: a Bayesian ApproachOndel, Lucas Antoine Francois Unknown Date (has links)
Děti mají již od útlého věku vrozenou schopnost vyvozovat jazykové znalosti z mluvené řeči - dlouho předtím, než se naučí číst a psát. Moderní systémy pro rozpoznávání řeči oproti tomu potřebují k dosažení nízké chybovosti značná množství přepsaných řečových dat. Teprve nedávno založená vědecká oblast "učení řeči bez supervize" se věnuje přenosu popsaných lidských schopností do strojového učení. V rámci této oblasti se naše práce zaměřuje na problém určení sady akustických jednotek z jazyka, kde jsou k disposici pouze nepřepsané zvukové nahrávky. Pro řešení tohoto problému zkoumáme zejména potenciál bayesovské inference. V práci nejprve pro úlohu určování akustických jednotek revidujeme využití state-of-the-art neparametrického bayesovského modelu, pro který jsme odvodili rychlý a efektivní algoritmus variační bayesovské inference. Náš přístup se opírá o konstrukci Dirichletova procesu pomocí "lámání hůlky" (stick breaking) umožňující vyjádření modelu jako fonémové smyčky založené na skrytém Markovově modelu. S tímto modelem a vhodnou středopolní (mean-field) aproximací variační posteriorní pravděpodobnosti je inference realizována pomocí efektivního iteračního algoritmu, podobného známému schématu Expectation-Maximization (EM). Experimenty ukazují, že tento přístup zajišťuje lepší shlukování než původní model, přičemž je řádově rychlejší. Druhým přínosem práce je řešení problému definice smysluplného apriorního rozdělení na potenciální akustické jednotky. Za tímto účelem představujeme zobecněný podprostorový model (Generalized Subspace Model) - teoretický rámec umožňující definovat pravděpodobnostní rozdělení v nízkodimenzionálních nadplochách (manifoldech) ve vysokorozměrném prostoru parametrů. Pomocí tohoto nástroje učíme fonetický podprostor - kontinuum vektorových reprezentací (embeddingů) fonémů - z několika jazyků s přepsanými nahrávkami. Pak je tento fonetický podprostor použit k omezení našeho systému tak, aby určené akustické jednotky byly podobné fonémům z ostatních jazyků. Experimentální výsledky ukazují,že tento přístup významně zlepšuje kvalitu shlukování i přesnost segmentace systému pro určování akustických jednotek.
|
214 |
ON THE BUTTERFLY-LIKE EFFECT OF TURBULENT WALL-BOUNDED FLOWS TOWARDS SUSTAINABILITYVenkatesh Pulletikurthi (15630353) 19 May 2023 (has links)
<p>We study the effect of minute perturbations by using blowing jets at upstream and bio-inspired micro denticles on turbulence large-scale motions which are observed to be crucial in controlling heat transfer, noise and drag reduction. This work is divided into two phases. In first phase, we studied the effect of blowing perturbations at upstream on large-scale motions and associated co?herent vortical structures which are crucial in enhancing heat transfer by promoting mixing. The second phase is focused on impact of flow dynamics in preventing the biofouling using micro bioinspired structures and the importance of flow regime in designing the antifouling coating us?ing bioinspired structures is demonstrated, and subsequently, separation bubble dynamics and its characterization is carried out for a transonic channel imposed with pressure gradient to further expand our thesis outcomes to utilize micro bioinspired structures in aerospace applications, noise reduction, and to delay separation.</p>
<p><br></p>
<p>Extensive studies were focused on the importance of large-scale motions (LSM) and their con?tribution to TKE and turbulence mixing. Although there are studies focusing on the λ2 coherent vortical structures and large-scale motions separately, there are no studies addressing the control?ling using upstream perturbations on the large-scale motions and their associated λ2 vortices. In the first phase of our studies, we used the DNS data of channel flow for Reτ = 394 generated using in-house code. In these simulations, we created blowing perturbations using spanwise jets of low blowing ratio, 0.2, placed at upstream. The spatial large-scale motions are extracted using a a novel 3D adaptive Gaussian filtering technique developed based on Lee and Sung [1] for turbulent pipe flows. POD is used to extract the energetic large-scale motions and coherent vortical structures are extracted using λ2-criterion for its efficiency in educing coherent structures in cross flow jets. The results show that the upstream perturbations enhance streamwise heat flux via energetic LSM and also create a secondary peak of scalar production in the log-layer showing that the perturbations alter LSMs to enhance the heat transfer. Filtered large-scale field from Gaussian filtering technique have an integral length scale greater than 2h (where h is channel half-height) are used to obtain λ2 vortices. The resulted λ2 vortices are of ring-type and have higher signature of temperature than their counterpart. The pre-multiplied spectra shows that the upstream perturbations can excite the large-scale wave-numbers which are in the same order as the jet diameter and spacing between them. Simulations show the presence of secondary peak in the log-layer and increased turbulence production which are eminent of large-scales. Furthermore, our results suggest that jet spacing and diameter are crucial in exciting large-scale field to control turbulent flows.</p>
<p><br></p>
<p>Evans, Hamed, Gorumlu, et al. [2] modeled the denticles present on Mako shark skin into a diverging micro-pillars. They conducted experimental studies in a water tunnel using these on the back of airfoil exposed to an adverse pressure gradient flow. They observed that presence of these pillars reduced the re-circulation bubble (form drag) by 50%. They proposed a blowing and suction type mechanism by which the micro pillars interact with the boundary layer. However, the details of underlying interfacial mechanism is not completely understood. The unique impact of flow conditions on anti-biofouling and the corresponding mechanisms for the first time is illustrated. We employed commercially available bioinspired structures as micro-diverging pillars making it feasible to apply in real life. We demonstrated the underlying mechanism by which bio?inspired structures are responsible for anti-biofouling. To study the pressure gradient effects on the separation under transonic conditions, we performed direct numerical simulations (DNS) in a non?equilibrium flow created by a sinsuoidal contraction and also, we quantified the separation length,</p>
<p>detachment, and attachment points of separation bubble imposed with various pressure gradients and their variation in the transonic and subsonic regimes. We noticed that the resultant shear at the attachement led to the enhancement of coherent structures which are extended into the outer layer under transonic flow which is quite different than the subsonic flow.</p>
|
215 |
Hydroacoustic Modelling of Podded Propulsion System : Underwater Radiated Noise Prediction Using ANSYSPersson, Martin January 2022 (has links)
Ocean noise pollution is an invisible but growing threat. There are many sources of sound in the ocean but human underwater radiated noise, in particular from shipping is one of the most prominent one. Ocean noise pollution can interfere or sometimes even directly harm marine life. This thesis is in collaboration with Kongsberg Maritime which aims to develop an underwater radiated noise prediction method for the ELegance pod system. In particular, the focus is on the noise generated as a direct effect of the permanent magnet motor vibrations. Kongsberg wants to be able to calculate the underwater radiated noise for different pod geometries and engine configurations in order to find an optimal operating speed of the electric motor. The underwater radiated noise prediction is carried out using two methods. The first one is a 2-way coupled fluid-structure interaction harmonic response model, dealing with the vibrations. In addition, the flow induced noise is evaluated using CFD combined with Ffowcs-Williams Hawkings acoustic analogy. The harmonic response model is used to calculate the sound in terms of a frequency response, which can be translated to revolutions per minute of the rotor. This allows Kongsberg to identify rotor speeds where the operation may or may not be optimal. The flow induced noise is investigated for a typical transit speed. The results show this noise is multiple orders of magnitude smaller than the sound caused by the vibrations. This together with the fact that the computational cost of CFD is large suggests that the flow induced noise is not something Kongsberg needs to consider at an early design stage. Neither the propeller nor cavitation is considered in this thesis, due to the limited computational resources but also that Kongsberg designs propellers that are vessel specific. These sources of sound become important when considering the full acoustic profile of a propulsion unit of this type.
|
216 |
Do potentially seal-safe pingers deter harbour porpoises (Phocoena phocoena) in the vicinity of gillnets and thereby reduce bycatch?Björklund Aksoy, Simon January 2020 (has links)
Incidental bycatch in gillnets is a substantial threat to small cetaceans. Using Acoustic Deterrent Devices, “pingers”, have successfully reduced bycatch of harbour porpoises in gillnets. However, seals can use pingers as “dinner-bells” to easier find gillnets in order to raid and destroy them, further aggravating the existing conflicts between seals and coastal fisheries. Therefore, in the present study, the efficiency of two alleged “seal-safe” pingers, an experimental Banana pinger “SSB” and a Future Oceans F70 pinger “FO”, in deterring harbour porpoises from the vicinity of gillnets and thereby reducing bycatch in commercial gillnet fisheries, was tested. This was done by deploying click detectors, “C-PODs”, recording Detection Positive Minutes per hour, at each end of gillnets, provided with the two pinger types or no pingers at all. Bycatch instances were recorded into logbooks by participating fishermen and verified using video footage from on-board video cameras. Results showed that video monitoring was a reliable method for verifying the number of bycatches of porpoises and seals, but not seabirds, recorded in the fishermen’s logbooks. The experimental SSB pingers and the FO pingers significantly reduced porpoise presence, measured as Detection Positive Minutes per hour in the vicinity of the nets, compared to gillnets without pingers. However, the sample size was too small to yield a significant result regarding the bycatch reducing efficiency and dinner bell effect of the experimental pingers. Nevertheless, bycatch trends suggest that pingers did in fact reduce porpoise bycatch. Although both successful, FO pingers were slightly more efficient in deterring porpoises than SSB pingers. The SSB pinger sounds had bigger directionality variations than the FO pinger, which may have affected its deterrent effects. Therefore, additional trials are needed to further investigate this aspect.
|
217 |
Expedient Modal Decomposition of Massive Datasets Using High Performance Computing ClustersVyapamakula Sreeramachandra, Sankeerth 02 August 2018 (has links)
No description available.
|
218 |
An Exploration of Attitudes toward Obesity and its Association with Dietary Intake and Percent Body Fat between Dietetic and Non-Dietetic MajorsDubale, Gauri Manohar January 2004 (has links)
No description available.
|
219 |
Reduced order modeling, nonlinear analysis and control methods for flow control problemsKasnakoglu, Cosku 10 December 2007 (has links)
No description available.
|
220 |
Fire Simulation Cost Reduction for Improved Safety and Response for Underground SpacesHaghighat, Ali 16 October 2017 (has links)
Over the past century, great strides have been made in the advancement of mine fire knowledge since the 1909 Cherry Mine Fire Disaster, one of the worst in U.S. history. However, fire hazards remain omnipresent in underground coal mines in the U.S. and around the world. A precise fire numerical analysis (simulation) before any fire events can give a broad view of the emergency scenarios, leading to improved emergency response, and better health and safety outcomes. However, the simulation cost of precise large complex dynamical systems such as fire in underground mines makes practical and even theoretical application challenging. This work details a novel methodology to reduce fire and airflow simulation costs in order to make simulation of complex systems around fire and mine ventilation systems viable. This study will examine the development of a Reduced Order Model (ROM) to predict the flow field of an underground mine geometry using proper orthogonal decomposition (POD) to reduce the airflow simulation cost in a nonlinear model. ROM proves to be an effective tool for approximating several possible solutions near a known solution, resulting in significant time savings over calculating full solutions and suitable for ensemble calculations. In addition, a novel iterative methodology was developed based on the physics of the fluid structure, turbulent kinetic energy (TKE) of the dynamical system, and the vortex dynamics to determine the interface boundary in multiscale (3D-1D) fire simulations of underground space environments. The proposed methodology was demonstrated to be a useful technique for the determination of near and far fire fields, and could be applied across a broad range of flow simulations and mine geometries. Moreover, this research develops a methodology to analyze the tenable limits in a methane fire event in an underground coal mine for bare-faced miners, mine rescue teams, and fire brigade teams in order to improve safety and training of personnel trained to fight fires. The outcomes of this research are specific to mining although the methods outlined might have broader impacts on the other fields such as tunneling and underground spaces technology, HVAC, and fire protection engineering industries. / Ph. D. / With the rapid advancement of technology, the mine fire knowledge has progressed significantly. Atmospheric monitoring and early sensing of heating has improved; the numerical analysis has been expedited with the usage of supercomputers, and more regulations and standards have been set to increase health and safety of miners. In spite of advancements in these areas, fire hazards remain a critical hazard in underground mines. Developing an emergency plan for the safe escape and for fighting the fire is one of the most important issues during a fire event in underground space environments such as mines. A precise fire numerical analysis (simulation) before any fire events can give a broad view of the emergency situation that leads to improving the health and safety issues in the mining industry. Unfortunately, the precise simulation of the large complex dynamical system such as a fire in underground spaces is costly. This work details a cutting edge approach to reduce the fire and airflow simulation costs in order to make simulation of complex systems around fire and mine ventilation systems viable. The main focus of this proposal is to develop novel methodologies to decrease the time of the fire and airflow simulations. The developed methodologies prove to be useful techniques for the reduction of fire simulation and airflow simulation costs. In addition, this study will examine the development of a comprehensive methodology to analyze the tenable limits in a fire event in an underground coal mine in order to improve safety and training of personnel trained to fight fires. These simulations, applied to training, will result in more efficient evacuations (e.g., the decision to leave can be made quickly and with less delay), as well as safe and effective firefighting under certain situations. The target of this research is specific to mining industry although the methods outlined might have broader impacts on the other fields such as tunneling and underground spaces technology, HVAC, and fire protection engineering industries. Therefore, this research may have an immense contribution on the improvement of health and safety associated with firefighting.
|
Page generated in 0.0385 seconds