• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Existência de atrator global para equações de Navier-Stokes sobre alguns domínios ilimitados em R2.

Silva, Jarbas Dantas da 18 June 2014 (has links)
Made available in DSpace on 2015-05-15T11:46:19Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 903709 bytes, checksum: 4a8dba984b00ee5480eecf90097b2745 (MD5) Previous issue date: 2014-06-18 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we study the Navier-Stokes flow in R2 8> >>>>>><> >>>>>>: @u @t − ⌫!u + (u ·r)u + rp = f em ⌦ ⇥ [0,+1) , divu = r· u = 0 em ⌦⇥ [0,+1) , u = 0 sobre @⌦ ⇥ [0,+1) , u(·, 0) = u0 em ⌦, in an unbounded domain such that the Poincar´e s inequality is holds, i.e., there is a constant #1 > 0 such that we have the following inequality Z⌦ $2dx  1 #1 Z⌦ |r$|2dx, for all $ 2 H1 0 (⌦). We show the existence of global attractor in the natural phases spaces for this system exploring the energy equation of the problem / Neste trabalho, estudamos o sistema de equa¸c oes de Navier-Stokes em R2 8> >>>>>><> >>>>>>: @u @t − ⌫!u + (u ·r)u + rp = f em ⌦ ⇥ [0,+1) , divu = r· u = 0 em ⌦⇥ [0,+1) , u = 0 sobre @⌦ ⇥ [0,+1) , u(·, 0) = u0 em ⌦, em dom´ınios ilimitados sob os quais vale a desigualdade de Poincar´e, isto ´e, existe uma constante #1 > 0 tal que Z⌦ $2dx  1 #1 Z⌦ |r$|2dx, para todo $ 2 H1 0 (⌦). Provamos a exist encia de atrator global no espa¸co de fases natural para este sistema explorando a equa¸c ao de energia do problema.

Page generated in 0.0448 seconds