• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 149
  • 40
  • 15
  • 11
  • 10
  • 5
  • 4
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 275
  • 275
  • 106
  • 64
  • 58
  • 54
  • 49
  • 42
  • 42
  • 40
  • 38
  • 38
  • 37
  • 35
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

3D Layout Scanning for Smart Manufacturing : Method Development and a Study of Future Possibilities

Nargund, Vijay, Ahmed, Syed Z. January 2018 (has links)
The term ‘Industry 4.0’ leads to many new possibilities like smart factory which is the amalgamation of manufacturing systems in a network to perform tasks more efficiently. It is becoming more and more important for the companies to develop smart factories and integrate the devices within such a facility to meet the demands of the evolving market. The next generation production systems are designed to share the data within the network, plan, and predict the solution for the future problems. One such technology under smart factory is 3D laser scanning resulting in point cloud of the production unit. The traditional way of documenting a layout is usually with the help of 2D computer aided designs which are susceptible to measurement errors and changes that are not updated regularly. With the help of point clouds, an as-is representation of the factories can be recorded which can be easily updated with changes in the real world. With advancements in virtual manufacturing, the need for visualization of the factories is increasing drastically. 3D Laser Scanning is one of the better ways of meeting this need, among many other applications. The focus of the thesis had been to create a method document for 3D laser scanning of factories and to discuss the future possibilities of it. The research approach used in this thesis was conducting observational study, interviews and testing of the method. One such future possibility is autonomous scanning and how it would be beneficial for a company like Scania which is developing smart factories. Based on the study carried out during the thesis, a document presenting the method developed is included in the report. The report also points out the applications and benefits of point cloud over traditional layout planning methods.
162

Reamostragem adaptativa para simplificação de nuvens de pontos

Silva, Fabrício Müller da 31 August 2015 (has links)
Submitted by Silvana Teresinha Dornelles Studzinski (sstudzinski) on 2015-10-27T14:34:35Z No. of bitstreams: 1 Fabrício Müller da Silva_.pdf: 105910980 bytes, checksum: 4ce66a9d5fff9a2b2a97835c54dac355 (MD5) / Made available in DSpace on 2015-10-27T14:34:35Z (GMT). No. of bitstreams: 1 Fabrício Müller da Silva_.pdf: 105910980 bytes, checksum: 4ce66a9d5fff9a2b2a97835c54dac355 (MD5) Previous issue date: 2015-08-31 / Nenhuma / Este trabalho apresenta um algoritmo para simplificação de nuvens de pontos baseado na inclinação local da superfície amostrada pelo conjunto de pontos de entrada. O objetivo é transformar a nuvem de pontos original no menor conjunto possível, mantendo as características e a topologia da superfície original. O algoritmo proposto reamostra de forma adaptativa o conjunto de entrada, removendo pontos redundantes para manter um determinado nível de qualidade definido pelo usuário no conjunto final. O processo consiste em um particionamento recursivo do conjunto de entrada através da Análise de Componentes Principais (PCA). No algoritmo, PCA é aplicada para definir as partições sucessivas, para obter uma aproximação linear (por planos) em cada partição e para avaliar a qualidade de cada aproximação. Por fim, o algoritmo faz uma escolha simples de quais pontos serão mantidos para representar a aproximação linear de cada partição. Estes pontos formarão o conjunto de dados final após o processo de simplificação. Para avaliação dos resultados foi aplicada uma métrica de distância entre malhas de polígonos, baseada na distância de Hausdorff, comparando a superfície reconstruída com a nuvem de pontos original e aquela reconstruída com a nuvem filtrada. Os resultados obtidos com o algoritmo conseguiram uma taxa de até 95% de compactação do conjunto de dados de entrada, diminuindo o tempo total de execução do processo de reconstrução, mantendo as características e a topologia do modelo original. A qualidade da superfície reconstruída com a nuvem filtrada também é atestada pela métrica de comparação. / This paper presents a simple and efficient algorithm for point cloud simplification based on the local inclination of the surface sampled by the input set. The objective is to transform the original point cloud in a small as possible one, keeping the features and topology of the original surface. The proposed algorithm performs an adaptive resampling of the input set, removing unnecessary points to maintain a level of quality defined by the user in the final dataset. The process consists of a recursive partitioning in the input set using Principal Component Analysis (PCA). PCA is applied for defining the successive partitions, for obtaining the linear approximations (planes) for each partition, and for evaluating the quality of those approximations. Finally, the algorithm makes a simple choice of the points to represent the linear approximation of each partition. These points are the final dataset of the simplification process. For result evaluation, a distance metric between polygon meshes, based on Hausdorff distance, was defined, comparing the reconstructed surface using the original point clouds and the reconstructed surface usingthe filtered ones. The algorithm achieved compression rates up to 95% of the input dataset,while reducing the total execution time of reconstruction process, keeping the features and the topology of the original model. The quality of the reconstructed surface using the filtered point cloud is also attested by the distance metric.
163

AUTOMATED TREE-LEVEL FOREST QUANTIFICATION USING AIRBORNE LIDAR

Hamraz, Hamid 01 January 2018 (has links)
Traditional forest management relies on a small field sample and interpretation of aerial photography that not only are costly to execute but also yield inaccurate estimates of the entire forest in question. Airborne light detection and ranging (LiDAR) is a remote sensing technology that records point clouds representing the 3D structure of a forest canopy and the terrain underneath. We present a method for segmenting individual trees from the LiDAR point clouds without making prior assumptions about tree crown shapes and sizes. We then present a method that vertically stratifies the point cloud to an overstory and multiple understory tree canopy layers. Using the stratification method, we modeled the occlusion of higher canopy layers with respect to point density. We also present a distributed computing approach that enables processing the massive data of an arbitrarily large forest. Lastly, we investigated using deep learning for coniferous/deciduous classification of point cloud segments representing individual tree crowns. We applied the developed methods to the University of Kentucky Robinson Forest, a natural, majorly deciduous, closed-canopy forest. 90% of overstory and 47% of understory trees were detected with false positive rates of 14% and 2% respectively. Vertical stratification improved the detection rate of understory trees to 67% at the cost of increasing their false positive rate to 12%. According to our occlusion model, a point density of about 170 pt/m² is needed to segment understory trees located in the third layer as accurately as overstory trees. Using our distributed processing method, we segmented about two million trees within a 7400-ha forest in 2.5 hours using 192 processing cores, showing a speedup of ~170. Our deep learning experiments showed high classification accuracies (~82% coniferous and ~90% deciduous) without the need to manually assemble the features. In conclusion, the methods developed are steps forward to remote, accurate quantification of large natural forests at the individual tree level.
164

3D modeling of built heritage : from geometric models to HBIM / Modélisation 3D du patrimoine bâti ancien : intégration de modèles géométriques dans un BIM patrimonial

Yang, Xiucheng 17 December 2018 (has links)
La maquette numérique de bâtiments historiques (Heritage-BIM) est devenue un enjeu majeur dans la modélisation. Le modèle HBIM ainsi obtenu comprend une description paramétrique et sémantique des éléments constitutifs du patrimoine. La thèse présente des méthodes de constructions HBIM à partir de la documentation historique, de nuages de points, de maillage de surfaces et de géométrie solide. Un concept de mesh-to-HBIM est proposé à l'aide de la programmation visuelle, qui permet de transformer les « familles » paramétriques et les structures géométriques en modèles paramétriques et sémantiques HBIM. La modélisation paramétrique HBIM consiste à créer manuellement des Familles Revit paramétriques et une reconstruction de bâtiment semi-automatisée par l'application de scripts Dynamo. Le processus de modélisation sémantique HBIM transforme directement des géométries segmentées de maillages ou de solides vers l'environnement BIM. Les éléments segmentés et individualisés peuvent être stockés et gérés dans cet environnement avec des compléments d'informations d'association entre éléments. / Heritage Building Information Modelling (HBIM) is a major issue in heritage documentation and conservation. The obtained HBIM model provides a parametric and semantic description of the heritage elements. This thesis presents methods for the generation of HBIM models from point clouds (obtained by photogrammetry or laser scanning), surface mesh and solid geometry. A concept of solid/mesh-to-HBIM is proposed using Autodesk Dynamo visual programming, which transfers the parametric “Family” and geometric structures to parametric and semantic HBIM models. The parametric HBIM modelling process involves conventional manual parametric “Family” creation and semi-automated building reconstruction by Dynamo. The semantic HBIM modelling process directly transfers the segmented solid geometry and closed mesh-to-BIM environment. The segmented elements can be stored and managed in the BIM environment with attached attributes information and relationships established among the elements.
165

Construction de modèles 3D à partir de données vidéo fisheye : application à la localisation en milieu urbain / Construction of 3D models from fisheye video data—Application to the localisation in urban area

Moreau, Julien 07 June 2016 (has links)
Cette recherche vise à la modélisation 3D depuis un système de vision fisheye embarqué, utilisée pour une application GNSS dans le cadre du projet Predit CAPLOC. La propagation des signaux satellitaires en milieu urbain est soumise à des réflexions sur les structures, altérant la précision et la disponibilité de la localisation. L’ambition du projet est (1) de définir un système de vision omnidirectionnelle capable de fournir des informations sur la structure 3D urbaine et (2) de montrer qu’elles permettent d’améliorer la localisation.Le mémoire expose les choix en (1) calibrage automatique, (2) mise en correspondance entre images, (3) reconstruction 3D ; chaque algorithme est évalué sur images de synthèse et réelles. De plus, il décrit une manière de corriger les réflexions des signaux GNSS depuis un nuage de points 3D pour améliorer le positionnement. En adaptant le meilleur de l’état de l’art du domaine, deux systèmes sont proposés et expérimentés. Le premier est un système stéréoscopique à deux caméras fisheye orientées vers le ciel. Le second en est l’adaptation à une unique caméra.Le calibrage est assuré à travers deux étapes : l’algorithme des 9 points adapté au modèle « équisolide » couplé à un RANSAC, suivi d’un affinement par optimisation Levenberg-Marquardt. L’effort a été porté sur la manière d’appliquer la méthode pour des performances optimales et reproductibles. C’est un point crucial pour un système à une seule caméra car la pose doit être estimée à chaque nouvelle image.Les correspondances stéréo sont obtenues pour tout pixel par programmation dynamique utilisant un graphe 3D. Elles sont assurées le long des courbes épipolaires conjuguées projetées de manière adaptée sur chaque image. Une particularité est que les distorsions ne sont pas rectifiées afin de ne pas altérer le contenu visuel ni diminuer la précision. Dans le cas binoculaire il est possible d’estimer les coordonnées à l’échelle. En monoculaire, l’ajout d’un odomètre permet d’y arriver. Les nuages successifs peuvent être calés pour former un nuage global en SfM.L’application finale consiste dans l’utilisation du nuage 3D pour améliorer la localisation GNSS. Il est possible d’estimer l’erreur de pseudodistance d’un signal après multiples réflexions et d’en tenir compte pour une position plus précise. Les surfaces réfléchissantes sont modélisées grâce à une extraction de plans et de l’empreinte des bâtiments. La méthode est évaluée sur des paires d’images fixes géo-référencées par un récepteur bas-coût et un récepteur GPS RTK (vérité terrain). Les résultats montrent une amélioration de la localisation en milieu urbain. / This research deals with 3D modelling from an embedded fisheye vision system, used for a GNSS application as part of CAPLOC project. Satellite signal propagation in urban area implies reflections on structures, impairing localisation’s accuracy and availability. The project purpose is (1) to define an omnidirectional vision system able to provide information on urban 3D structure and (2) to demonstrate that it allows to improve localisation.This thesis addresses problems of (1) self-calibration, (2) matching between images, (3) 3D reconstruction ; each algorithm is assessed on computer-generated and real images. Moreover, it describes a way to correct GNSS signals reflections from a 3D point cloud to improve positioning. We propose and evaluate two systems based on state-of-the-art methods. First one is a stereoscopic system made of two sky facing fisheye cameras. Second one is the adaptation of the former to a single camera.Calibration is handled by a two-steps process: the 9-point algorithm fitted to “equisolid” model coupled with a RANSAC, followed by a Levenberg-Marquardt optimisation refinement. We focused on the way to apply the method for optimal and repeatable performances. It is a crucial point for a system composed of only one camera because the pose must be estimated for every new image.Stereo matches are obtained for every pixel by dynamic programming using a 3D graph. Matching is done along conjugated epipolar curves projected in a suitable manner on each image. A distinctive feature is that distortions are not rectified in order to neither degrade visual content nor to decrease accuracy. In the binocular case it is possible to estimate full-scale coordinates.In the monocular case, we do it by adding odometer information. Local clouds can be wedged in SfM to form a global cloud.The end application is the usage of the 3D cloud to improve GNSS localisation. It is possible to estimate and consider a signal pseudodistance error after multiple reflections in order to increase positioning accuracy. Reflecting surfaces are modelled thanks to plane and buildings trace fitting. The method is evaluated on fixed image pairs, georeferenced by a low-cost receiver and a GPS RTK receiver (ground truth). Study results show the localisation improvement ability in urban environment.
166

3D Surface Analysis for the Automated Detection of Deformations on Automotive Panels

Yogeswaran, Arjun 16 May 2011 (has links)
This thesis examines an automated method to detect surface deformations on automotive panels for the purpose of quality control along a manufacturing assembly line. Automation in the automotive manufacturing industry is becoming more prominent, but quality control is still largely performed by human workers. Quality control is important in the context of automotive body panels as deformations can occur along the assembly line such as inadequate handling of parts or tools around a vehicle during assembly, rack storage, and shipping from subcontractors. These defects are currently identified and marked, before panels are either rectified or discarded. This work attempts to develop an automated system to detect deformations to alleviate the dependence on human workers in quality control and improve performance by increasing speed and accuracy. Some techniques make use of an ideal CAD model behaving as a master work, and panels scanned on the assembly line are compared to this model to determine the location of deformations. This thesis presents a solution for detecting deformations of various scales without a master work. It also focuses on automated analysis requiring minimal intuitive operator-set parameters and provides the ability to classify the deformations as dings, which are deformations that protrude from the surface, or dents, which are depressions into the surface. A complete automated deformation detection system is proposed, comprised of a feature extraction module, segmentation module, and classification module, which outputs the locations of deformations when provided with the 3D mesh of an automotive panel. Two feature extraction techniques are proposed. The first is a general feature extraction technique for 3D meshes using octrees for multi-resolution analysis and evaluates the amount of surface variation to locate deformations. The second is specifically designed for the purpose of deformation detection, and analyzes multi-resolution cross-sections of a 3D mesh to locate deformations based on their estimated size. The performance of the proposed automated deformation detection system, and all of its sub-modules, is tested on a set of meshes which represent differing characteristics of deformations in surface panels, including deformations of different scales. Noisy, low resolution meshes are captured from a 3D acquisition, while artificial meshes are generated to simulate ideal acquisition conditions. The proposed system shows accurate results in both ideal situations as well as non-ideal situations under the condition of noise and complex surface curvature by extracting only the deformations of interest and accurately classifying them as dings or dents.
167

3D Surface Analysis for the Automated Detection of Deformations on Automotive Panels

Yogeswaran, Arjun 16 May 2011 (has links)
This thesis examines an automated method to detect surface deformations on automotive panels for the purpose of quality control along a manufacturing assembly line. Automation in the automotive manufacturing industry is becoming more prominent, but quality control is still largely performed by human workers. Quality control is important in the context of automotive body panels as deformations can occur along the assembly line such as inadequate handling of parts or tools around a vehicle during assembly, rack storage, and shipping from subcontractors. These defects are currently identified and marked, before panels are either rectified or discarded. This work attempts to develop an automated system to detect deformations to alleviate the dependence on human workers in quality control and improve performance by increasing speed and accuracy. Some techniques make use of an ideal CAD model behaving as a master work, and panels scanned on the assembly line are compared to this model to determine the location of deformations. This thesis presents a solution for detecting deformations of various scales without a master work. It also focuses on automated analysis requiring minimal intuitive operator-set parameters and provides the ability to classify the deformations as dings, which are deformations that protrude from the surface, or dents, which are depressions into the surface. A complete automated deformation detection system is proposed, comprised of a feature extraction module, segmentation module, and classification module, which outputs the locations of deformations when provided with the 3D mesh of an automotive panel. Two feature extraction techniques are proposed. The first is a general feature extraction technique for 3D meshes using octrees for multi-resolution analysis and evaluates the amount of surface variation to locate deformations. The second is specifically designed for the purpose of deformation detection, and analyzes multi-resolution cross-sections of a 3D mesh to locate deformations based on their estimated size. The performance of the proposed automated deformation detection system, and all of its sub-modules, is tested on a set of meshes which represent differing characteristics of deformations in surface panels, including deformations of different scales. Noisy, low resolution meshes are captured from a 3D acquisition, while artificial meshes are generated to simulate ideal acquisition conditions. The proposed system shows accurate results in both ideal situations as well as non-ideal situations under the condition of noise and complex surface curvature by extracting only the deformations of interest and accurately classifying them as dings or dents.
168

Objektų Pozicijos ir Orientacijos Nustatymo Metodų Mobiliam Robotui Efektyvumo Tyrimas / Efficiency Analysis of Object Position and Orientation Detection Algorithms for Mobile Robot

Uktveris, Tomas 18 August 2014 (has links)
Šiame darbe tiriami algoritminiai sprendimai mobiliam robotui, leidžiantys aptikti ieškomą objektą bei įvertinti jo poziciją ir orientaciją erdvėje. Atlikus šios srities technologijų analizę surasta įvairių realizacijai tinkamų metodų, tačiau bendro jų efektyvumo palyginimo trūko. Siekiant užpildyti šią spragą realizuota programinė ir techninė įranga, kuria atliktas labiausiai roboto sistemoms tinkamų metodų vertinimas. Algoritmų analizė susideda iš algoritmų tikslumo ir jų veikimo spartos vertinimo panaudojant tam paprastus bei efektyvius metodus. Darbe analizuojamas objektų orientacijos nustatymas iš Kinect kameros gylio duomenų pasitelkiant ICP algoritmą. Atliktas dviejų gylio sistemų spartos ir tikslumo tyrimas parodė, jog Kinect kamera spartos atžvilgiu yra efektyvesnis bei 2-5 kartus tikslesnis sprendimas nei įprastinė stereo kamerų sistema. Objektų aptikimo algoritmų efektyvumo eksperimentuose nustatytas maksimalus aptikimo tikslumas apie 90% bei pasiekta maksimali 15 kadrų/s veikimo sparta analizuojant standartinius VGA 640x480 raiškos vaizdus. Atliktas objektų pozicijos ir orientacijos nustatymo ICP metodo efektyvumo tyrimas parodė, jog vidutinė absoliutinė pozicijos ir orientacijos nustatymo paklaida yra atitinkamai apie 3.4cm bei apie 30 laipsnių, o veikimo sparta apie 2 kadrai/s. Tolesnis optimizavimas arba duomenų kiekio minimizavimas yra būtinas norint pasiekti geresnius veikimo rezultatus mobilioje ribotų resursų roboto sistemoje. Darbe taip pat buvo sėkmingai... [toliau žr. visą tekstą] / This work presents a performance analysis of the state-of-the-art computer vision algorithms for object detection and pose estimation. Initial field study showed that many algorithms for the given problem exist but still their combined comparison was lacking. In order to fill in the existing gap a software and hardware solution was created and the comparison of the most suitable methods for a robot system were done. The analysis consists of detector accuracy and runtime performance evaluation using simple and robust techniques. Object pose estimation via ICP algorithm and stereo vision Kinect depth sensor method was used in this work. A conducted two different stereo system analysis showed that Kinect achieves best runtime performance and its accuracy is 2-5 times more superior than a regular stereo setup. Object detection experiments showcased a maximum object detection accuracy of nearly 90% and speed of 15 fps for standard size VGA 640x480 resolution images. Accomplished object position and orientation estimation experiment using ICP method showed, that average absolute position and orientation detection error is respectively 3.4cm and 30 degrees while the runtime speed – 2 fps. Further optimization and data size minimization is necessary to achieve better efficiency on a resource limited mobile robot platform. The robot hardware system was also successfully implemented and tested in this work for object position and orientation detection.
169

3D Surface Analysis for the Automated Detection of Deformations on Automotive Panels

Yogeswaran, Arjun 16 May 2011 (has links)
This thesis examines an automated method to detect surface deformations on automotive panels for the purpose of quality control along a manufacturing assembly line. Automation in the automotive manufacturing industry is becoming more prominent, but quality control is still largely performed by human workers. Quality control is important in the context of automotive body panels as deformations can occur along the assembly line such as inadequate handling of parts or tools around a vehicle during assembly, rack storage, and shipping from subcontractors. These defects are currently identified and marked, before panels are either rectified or discarded. This work attempts to develop an automated system to detect deformations to alleviate the dependence on human workers in quality control and improve performance by increasing speed and accuracy. Some techniques make use of an ideal CAD model behaving as a master work, and panels scanned on the assembly line are compared to this model to determine the location of deformations. This thesis presents a solution for detecting deformations of various scales without a master work. It also focuses on automated analysis requiring minimal intuitive operator-set parameters and provides the ability to classify the deformations as dings, which are deformations that protrude from the surface, or dents, which are depressions into the surface. A complete automated deformation detection system is proposed, comprised of a feature extraction module, segmentation module, and classification module, which outputs the locations of deformations when provided with the 3D mesh of an automotive panel. Two feature extraction techniques are proposed. The first is a general feature extraction technique for 3D meshes using octrees for multi-resolution analysis and evaluates the amount of surface variation to locate deformations. The second is specifically designed for the purpose of deformation detection, and analyzes multi-resolution cross-sections of a 3D mesh to locate deformations based on their estimated size. The performance of the proposed automated deformation detection system, and all of its sub-modules, is tested on a set of meshes which represent differing characteristics of deformations in surface panels, including deformations of different scales. Noisy, low resolution meshes are captured from a 3D acquisition, while artificial meshes are generated to simulate ideal acquisition conditions. The proposed system shows accurate results in both ideal situations as well as non-ideal situations under the condition of noise and complex surface curvature by extracting only the deformations of interest and accurately classifying them as dings or dents.
170

Generation of hyperspectral digital surface model in forest areas using hyperspectral 2D frame camera onboard RPAS / Geração de modelo digital de superfície hiperespectral, em áreas de floresta utilizando câmara hiperespectral de quadro embarcada em VANT

Oliveira, Raquel Alves de [UNESP] 29 June 2017 (has links)
Submitted by Raquel Alves de Oliveira (raquel88@gmail.com) on 2017-12-07T10:06:49Z No. of bitstreams: 1 Oliveira_2017_TESE.pdf: 10400710 bytes, checksum: 4c4e6b235bd849c0d16074edea702847 (MD5) / Approved for entry into archive by ALESSANDRA KUBA OSHIRO null (alessandra@fct.unesp.br) on 2017-12-07T11:22:22Z (GMT) No. of bitstreams: 1 oliveira_ra_dr_prud.pdf: 10400710 bytes, checksum: 4c4e6b235bd849c0d16074edea702847 (MD5) / Made available in DSpace on 2017-12-07T11:22:23Z (GMT). No. of bitstreams: 1 oliveira_ra_dr_prud.pdf: 10400710 bytes, checksum: 4c4e6b235bd849c0d16074edea702847 (MD5) Previous issue date: 2017-06-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Recentemente, os sensores hiperespectrais miniaturizados entraram no mercado e alguns modelos adquirem bandas hiperespectrais com geometria de quadro, com a vantagem de serem também operados em veículos aéreos remotamente pilotados (VARP). As imagens deste tipo de câmara podem ser utilizadas para a geração de modelos digitais de superfície hiperespectral (MDSHs) de alta resolução, usando o VARP, sem a necessidade do registro de dados de diferentes sensores ou diferente datas de aquisição. MDSHs aumentam o conhecimento sobre os alvos, uma vez que permitem modelar a reflectância do alvo utilizando dados provenientes de diferentes direções. Neste trabalho, a câmara hiperespectral de quadro utilizada não adquire todas as bandas instantaneamente, causando um deslocamento entre as bandas devido ao movimento da plataforma. Os principais objetivos deste projeto foram estudar e desenvolver técnicas para a geração de MDSHs em áreas de florestas, investigando e avaliando as principais etapas para o processamento das imagens da câmara hiperespectral de quadro até a geração do MSDH. Considerando que a tecnologia da câmara baseia-se em filtros ajustáveis, o estudo avaliou: a auto-calibração da câmara, verificando o comportamento dos parâmetros de orientação interior em diferentes bandas espectrais; o corregistro das bandas através de transformações geométricas 2D; e a estimativa dos parâmetros de orientação exterior. Em relação à geração do MDS, uma abordagem baseada em correspondência de imagem no espaço do objeto foi desenvolvida, adaptando o método de busca em linha vertical (VLL) para a geração MDSH e foi nomeado como VLL hiperespectral (HVLL). Adicionalmente, o uso de imagens classificadas para a adaptação dos parâmetros de correspondência foi avaliado com o objetivo de melhorar o processo de correspondência para diferentes objetos (HVLLC). Posteriormente, foram utilizadas múltiplas bandas no processo de correspondência de imagens, dados como múltiplos ângulos de visada e informação espectral foram calculados simultaneamente ao processo de correspondência de imagens. A avaliação da qualidade foi realizada comparando-se os MDSs gerados com os produzidos por um software comercial e por dados Airborne Laser Scanning (ALS). Esta investigação demonstrou que a técnica proposta pode ser usada para a geração de modelos 3D integrados aos dados hiperespectrais multiangulares da câmara hiperespectral de quadro. A avaliação de todas as etapas demonstrou que esta tecnologia pode fornecer dados geométricos e espectrais precisos e os MDSHs resultantes possuem potencial para várias aplicações de sensoriamento remoto. / Recently, miniaturized hyperspectral sensors, operable from small Remotely Piloted Aerial Systems (RPAS), have entered the market and some of these sensors acquire hyperspectral bands in frame geometry. Images of the lightweight hyperspectral 2D frame camera can be used to generate high-resolution hyperspectral digital surface models (HDSMs), without the registration of data from different sensors or different dates of acquisition. HSDMs increase the knowledge about the targets since it allows modeling the target reflectance using data coming from different directions. In this study, the hyperspectral 2D frame camera used does not acquire all bands instantaneously, causing band misalignment due to the platform motion. The main aims of this project were to study and develop techniques for the generation of HDSMs in forest areas, studying and assessing the main steps to process the hyperspectral 2D frame camera images until the HDSM generation. Considering that the camera technology is based on tunable filters, the study have assessed the orientation and DSM generation steps: the self-calibrating bundle adjustment to verify the behaviour of the interior orientation parameters using different spectral bands; the co-registration of the bands using 2D geometric transformation; the exterior orientation parameter estimation. Regarding to the DSM generation, an approach based on object space image matching was developed, adapting the vertical line locus (VLL) method for HDSM generation, and was named as hyperspectral VLL (HVLL). Additionally, the use of image classification data was investigated in order to adapt the image matching parameters and improve the process of image matching for different objects (hyperspectral VLL classes - HVLLC). Further, multiple bands were used and the spectral and multiangular viewing geometry were computed simultaneously to the image matching method. Quality assessment was performed by comparing to DSMs generated to those produced by commercial software and also by Airborne Laser Scanning (ALS) data. This investigation demonstrated that the proposed technique can be used to generate integrated 3D information and multiangular hyperspectral data from hyperspectral 2D frame camera. The assessment of all steps showed that the hyperspectral 2D frame technology can provide accurate geometric and spectral data and the resulting HDSMs have potential for several remote sensing applications. / FAPESP: 2013/17787-3 / FAPESP: 2013/14444-0 / FAPESP: 2014/24844-6

Page generated in 0.0358 seconds