• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 10
  • 10
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Discrimination of Agricultural Land Management Practices using Polarimetric Synthetic Aperture RADAR

McKeown, Steven 04 September 2012 (has links)
This thesis investigates the sensitivity and separability of post-harvest tillage conditions using polarimetric Synthetic Aperture RADAR in southwestern Ontario. Variables examined include: linear polarizations HH, HV, and VV and polarimetric variables: pedestal height, co-polarized complex correlation coefficient magnitude, left and right co-polarized circular polarizations and co-polarized phase difference. Six fine-quad polarimetric, high incidence angle (49°) RADARSAT-2 images acquired over three dates in fall 2010 were used. Over 100 fields were monitored, coincident with satellite overpasses. OMAFRA’s AgRI, a high-resolution polygon network was used to extract average response from fields. Discrimination between tillage practices was best later in the fall season, due to sample size and low soil moisture conditions. Variables most sensitive to tillage activities include HH and VV polarizations and co-polarized complex correlation coefficient magnitude. A supervised support vector machine (SVM) classifier classified no-till and conventional tillage with 91.5% overall accuracy. These results highlight the potential of RADARSAT-2 for monitoring tillage conditions.
2

Surficial Materials Mapping and Surface Lineaments Analysis in the Umiujalik Lake area, Nunavut, Using RADARSAT-2 Polarimetric SAR, LANDSAT-7, and DEM Images

Shelat, Yask 01 April 2012 (has links)
This thesis is focused on the utilization of RADARSAT-2 polarimetric SAR data for mapping two surficial aspects of the Umiujalik Lake area, Nunavut, Canada: i) materials, such as bedrock, boulders, organic material, sand and gravel, thick and thin till; and ii) lineaments. To achieve these tasks, RADARSAT-2 polarimetric SAR images with three west-looking, increasing incidence angles (FQ1, FQ12, and FQ20, respectively) were used alone and in combination with LANDSAT-7 ETM+ and Digital Elevation Model (DEM) image data. The surficial materials mapping study tested: i) the effects of incidence angles on mapping accuracy; and ii) non-polarimetric and polarimetric classifiers. For non-polarimetric analysis, a Maximum Likelihood Classification (MLC) algorithm was applied to different combinations of RADARSAT-2, LANDSAT-7 ETM+, and DEM images, achieving a maximum overall classification accuracy of 85%. Polarimetric analyses first included computation of polarimetric signatures to understand the scattering mechanisms of the considered surficial materials, i.e., surface, volume, and multiple scatterings. It also tested three polarimetric classifiers: supervised Wishart (overall accuracy of 48.7% from FQ12 image), and unsupervised Freeman-Wishart, and Wishart-H/ /A. Three main conclusions were reached: i) high incidence angle greatly decreases classification accuracy for the HH polarized image when used alone, but incidence angle has little effect when the HV polarization is added; ii) combining images with three incidence angles (FQ1, FQ12, and FQ20) gives higher accuracy with the maximum likelihood classifier; and iii) the medium incidence angle image (FQ12) produces the best classification accuracy using polarimetric classifiers. In the second part of the study, surface lineaments were mapped using RADARSAT-2 SAR single-polarized images, RGB HH, HV, VV composites, polarimetric total power images, and LANDSAT-7 ETM+ principal component images. Polarization effect analysis showed that regardless of beam mode, more lineaments were identified on the HH image than on the HV image, and the maximum number of lineaments was identified on the multi-polarized RGB composite. Incidence angle effects results showed that regardless of polarization modes, the FQ12 image yielded more lineaments than the FQ1 or FQ20 images. The majority of lineaments are oriented in NW and NNW directions, which correspond to the ice flow direction during the last glaciation.
3

Outils statistiques et géométriques pour la classification des images SAR polarimétriques hautement texturées / Statistical and geometrical tools for the classification of highly textured polarimetric SAR images

Formont, Pierre 10 December 2013 (has links)
Les radars à synthèse d'ouverture (Synthetic Aperture Radar ou SAR) permettent de fournir des images à très haute résolution de la surface de la Terre. Les algorithmes de classification traditionnels se basent sur une hypothèse de bruit gaussien comme modèle de signal, qui est rapidement mise en défaut lorsque l'environnement devient inhomogène ou impulsionnel, comme c'est particulièrement le cas dans les images SAR polarimétriques haute résolution, notamment au niveau des zones urbaines. L'utilisation d'un modèle de bruit composé, appelé modèle SIRV, permet de mieux prendre en compte ces phénomènes et de représenter la réalité de manière plus adéquate. Cette thèse s'emploie alors à étudier l'application et l'impact de ce modèle pour la classification des images SAR polarimétriques afin d'améliorer l'interprétation des classifications au sens de la polarimétrie et à proposer des outils adaptés à ce nouveau modèle. En effet, il apparaît rapidement que les techniques classiques utilisent en réalité beaucoup plus l'information relative à la puissance de chaque pixel plutôt qu'à la polarimétrie pour la classification. Par ailleurs, les techniques de classification traditionnelles font régulièrement appel à la moyenne de matrices de covariance, calculée comme une moyenne arithmétique. Cependant, étant donnée la nature riemannienne de l'espace des matrices de covariance, cette définition n'est pas applicable et il est nécessaire d'employer une définition plus adaptée à cette structure riemannienne. Nous mettons en évidence l'intérêt d'utiliser un modèle de bruit non gaussien sur des données réelles et nous proposons plusieurs approches pour tirer parti de l'information polarimétrique qu'il apporte. L'apport de la géométrie de l'information pour le calcul de la moyenne est de même étudié, sur des données simulées mais également sur des données réelles acquises par l'ONERA. Enfin, une étude préliminaire d'une extension de ces travaux au cas de l'imagerie hyperspectrale est proposée, de par la proximité de ce type de données avec les données SAR polarimétriques. / Synthetic Aperture Radars (SAR) now provide high resolution images of the Earth surface. Traditional classification algorithms are based on a Gaussian assumption for the distribution of the signal, which is no longer valid when the background is heterogeneous, which is particularly the case for polarimetric SAR images, especially in urban areas. A compound Gaussian model, called the SIRV model, allows to take into account these phenomena. This thesis is then devoted to studying the impact of this model for the classification of polarimetric SAR images in order to improve the interpretation of classification results in a polarimetric sense, and to propose tools better suited to this model. Indeed, classical techniques using the Gaussian assumption actually use the power information of each pixel much more than the polarimetric information. Furthermore, it is often necessary to compute a mean of covariance matrices, usually by taking the standard arithmetical mean. However, the space of covariance matrices has a Riemannian structure, not an Euclidean one, which means this definition of the mean is not correct. We will then present several methods to use the actual polarimetric information thanks to the SIRV model to improve the classification results. The benefit of using a correct, Riemannian definition of the mean will also be demonstrated on simulated and real data. Finally, a preliminary study of an extension of this work to hyperspectral imagery will be presented.
4

Multitemporal Spaceborne Polarimetric SAR Data for Urban Land Cover Mapping

Niu, Xin January 2011 (has links)
Urban represents one of the most dynamic areas in the global change context. To support rational policies for sustainable urban development, remote sensing technologies such as Synthetic Aperture Radar (SAR) enjoy increasing popularity for collecting up-to-date and reliable information such as urban land cover/land-use. With the launch of advanced spaceborne SAR sensors such as RADARSAT-2, multitemporal fully polarimetric SAR data in high-resolution become increasingly available. Therefore, development of new methodologies to analyze such data for detailed and accurate urban mapping is in demand.   This research investigated multitemporal fine resolution spaceborne polarimetric SAR (PolSAR) data for detailed urban land cover mapping. To this end, the north and northwest parts of the Greater Toronto Area (GTA), Ontario, Canada were selected as the study area. Six-date C-band RADARSAT-2 fine-beam full polarimetric SAR data were acquired during June to September in 2008. Detailed urban land covers and various natural classes were focused in this study.   Both object-based and pixel-based classification schemes were investigated for detailed urban land cover mapping. For the object-based approaches, Support Vector Machine (SVM) and rule-based classification method were combined to evaluate the classification capacities of various polarimetric features. Classification efficiencies of various multitemporal data combination forms were assessed. For the pixel-based approach, a temporal-spatial Stochastic Expectation-Maximization (SEM) algorithm was proposed. With an adaptive Markov Random Field (MRF) analysis and multitemporal mixture models, contextual information was explored in the classification process. Moreover, the fitness of alternative data distribution assumptions of multi-look PolSAR data were compared for detailed urban mapping by this algorithm.   Both the object-based and pixel-based classifications could produce the finer urban structures with high accuracy. The superiority of SVM was demonstrated by comparison with the Nearest Neighbor (NN) classifier in object-based cases. Efficient polarimetric parameters such as Pauli parameters and processing approaches such as logarithmically scaling of the data were found to be useful to improve the classification results. Combination of both the ascending and descending data with appropriate temporal span are suitable for urban land cover mapping. The SEM algorithm could preserve the detailed urban features with high classification accuracy while simultaneously overcoming the speckles. Additionally the fitness of the G0p and Kp distribution assumptions were demonstrated better than the Wishart one. / <p>QC 20110315</p>
5

Urban Area Information Extraction From Polarimetric SAR Data

Xiang, Deliang January 2016 (has links)
Polarimetric Synthetic Aperture Radar (PolSAR) has been used for various remote sensing applications since more information could be obtained in multiple polarizations. The overall objective of this thesis is to investigate urban area information extraction from PolSAR data with the following specific objectives: (1) to exploit polarimetric scattering model-based decomposition methods for urban areas, (2) to investigate effective methods for man-made target detection, (3) to develop edge detection and superpixel generation methods, and (4) to investigate urban area classification and segmentation. Paper 1 proposes a new scattering coherency matrix to model the cross-polarized scattering component from urban areas, which adaptively considers the polarization orientation angles of buildings. Thus, the HV scattering components from forests and oriented urban areas can be modelled respectively. Paper 2 presents two urban area decompositions using this scattering model. After the decomposition, urban scattering components can be effectively extracted. Paper 3 presents an improved man-made target detection method for PolSAR data based on nonstationarity and asymmetry. Reflection asymmetry was incorporate into the azimuth nonstationarity extraction method to improve the man-made target detection accuracy, i.e., removing the natural areas and detecting the small targets. In Paper 4, the edge detection of PolSAR data was investigated using SIRV model and Gauss-shaped filter. This detector can locate the edge pixels accurately with fewer omissions. This could be useful for speckle noise reduction, superpixel generation and others. Paper 5 investigates an unsupervised classification method for PolSAR data in urban areas. The ortho and oriented buildings can be discriminated very well. Paper 6 proposes an adaptive superpixel generation method for PolSAR images. The algorithm produces compact superpixels that can well adhere to image boundaries in both natural and urban areas. / Polarimetriska Synthetic Aperture Radar (PolSAR) har använts för olika fjärranalystillämpningar för, eftersom mer information kan erhållas från multipolarisad data. Det övergripande syftet med denna avhandling är att undersöka informationshämtning över urbana områden från PolSAR data med följande särskilda mål: (1) att utnyttja polarimetrisk spridningsmodellbaserade nedbrytningsmetoder för stadsområden, (2) att undersöka effektiva metoder för upptäckt av konstgjorda objekt, (3) att utveckla metoder som kantavkänning och superpixel generation, och (4) för att undersöka klassificering och segmentering av stadsområden. Artikel 1 föreslår en ny spridnings-koherens matris för att modellera korspolariserade spridningskomponent från tätorter, som adaptivt utvärderar polariseringsorienteringsvinkel av byggnader. Artikel 2 presenterar nedbrytningstekniken över två urbana områden med hjälp av denna spridningsmodell. Efter nedbrytningen kunde urbana spridningskomponenter effektivt extraheras. Artikel 3 presenterar en förbättrad detekteringsmetod för konstgjorda mål med PolSAR data baserade på icke-stationaritet och asymmetri. integrerades reflektionsasymmetri i icke-stationaritetsmetoden för att förbättra noggrannheten i upptäckten av konstgjorda föremål, dvs. att ta bort naturområden och upptäcka de små föremålen. I artikel 4 undersöktes kantdetektering av PolSAR data med hjälp av SIRV modell och ett Gauss-formad filter. Denna detektor kan hitta kantpixlarna noggrant med mindre utelämnande. Detta skulle den vara användbar för reduktion av brus, superpixel generation och andra. Artikel 5 utforskar en oövervakad klassificeringsmetod av PolSAR data över stadsområden. Orto- och orienterade byggnader kan särskiljas mycket väl. Baserat på artikel 4 föreslår artikel 6 en adaptiv superpixel generationensmetod för PolSAR data. Algoritmen producerar kompakta superpixels som kan kommer att följa bildgränser i både naturliga och stadsområden. / <p>QC 20160607</p>
6

Modelos de mistura de distribuições na segmentação de imagens SAR polarimétricas multi-look / Multi-look polarimetric SAR image segmentation using mixture models

Horta, Michelle Matos 04 June 2009 (has links)
Esta tese se concentra em aplicar os modelos de mistura de distribuições na segmentação de imagens SAR polarimétricas multi-look. Dentro deste contexto, utilizou-se o algoritmo SEM em conjunto com os estimadores obtidos pelo método dos momentos para calcular as estimativas dos parâmetros do modelo de mistura das distribuições Wishart, Kp ou G0p. Cada uma destas distribuições possui parâmetros específicos que as diferem no ajuste dos dados com graus de homogeneidade variados. A distribuição Wishart descreve bem regiões com características mais homogêneas, como cultivo. Esta distribuição é muito utilizada na análise de dados SAR polarimétricos multi-look. As distribuições Kp e G0p possuem um parâmetro de rugosidade que as permitem descrever tanto regiões mais heterogêneas, como vegetação e áreas urbanas, quanto regiões homogêneas. Além dos modelos de mistura de uma única família de distribuições, também foi analisado o caso de um dicionário contendo as três famílias. Há comparações do método SEM proposto para os diferentes modelos com os métodos da literatura k-médias e EM utilizando imagens reais da banda L. O método SEM com a mistura de distribuições G0p forneceu os melhores resultados quando os outliers da imagem são desconsiderados. A distribuição G0p foi a mais flexível ao ajuste dos diferentes tipos de alvo. A distribuição Wishart foi robusta às diferentes inicializações. O método k-médias com a distribuição Wishart é robusto à segmentação de imagens contendo outliers, mas não é muito flexível à variabilidade das regiões heterogêneas. O modelo de mistura do dicionário de famílias melhora a log-verossimilhança do método SEM, mas apresenta resultados parecidos com os do modelo de mistura G0p. Para todos os tipos de inicialização e grupos, a distribuição G0p predominou no processo de seleção das distribuições do dicionário de famílias. / The main focus of this thesis consists of the application of mixture models in multi-look polarimetric SAR image segmentation. Within this context, the SEM algorithm, together with the method of moments, were applied in the estimation of the Wishart, Kp and G0p mixture model parameters. Each one of these distributions has specific parameters that allows fitting data with different degrees of homogeneity. The Wishart distribution is suitable for modeling homogeneous regions, like crop fields for example. This distribution is widely used in multi-look polarimetric SAR data analysis. The distributions Kp and G0p have a roughness parameter that allows them to describe both heterogeneous regions, as vegetation and urban areas, and homogeneous regions. Besides adopting mixture models of a single family of distributions, the use of a dictionary with all the three family of distributions was proposed and analyzed. Also, a comparison between the performance of the proposed SEM method, considering the different models in real L-band images and two widely known techniques described in literature (k-means and EM algorithms), are shown and discussed. The proposed SEM method, considering a G0p mixture model combined with a outlier removal stage, provided the best classication results. The G0p distribution was the most flexible for fitting the different kinds of data. The Wishart distribution was robust for different initializations. The k-means algorithm with Wishart distribution is robust for segmentation of SAR images containing outliers, but it is not so flexible to variabilities in heterogeneous regions. The mixture model considering the dictionary of distributions improves the SEM method log-likelihood, but presents similar results to those of G0p mixture model. For all types of initializations and clusters, the G0p prevailed in the distribution selection process of the dictionary of distributions.
7

Multitemporal Spaceborne Polarimetric SAR Data for Urban Land Cover Mapping

Niu, Xin January 2012 (has links)
Urban land cover mapping represents one of the most important remote sensing applications in the context of rapid global urbanization. In recent years, high resolution spaceborne Polarimetric Synthetic Aperture Radar (PolSAR) has been increasingly used for urban land cover/land-use mapping, since more information could be obtained in multiple polarizations and the collection of such data is less influenced by solar illumination and weather conditions.  The overall objective of this research is to develop effective methods to extract accurate and detailed urban land cover information from spaceborne PolSAR data. Six RADARSAT-2 fine-beam polarimetric SAR and three RADARSAT-2 ultra-fine beam SAR images were used. These data were acquired from June to September 2008 over the north urban-rural fringe of the Greater Toronto Area, Canada. The major landuse/land-cover classes in this area include high-density residential areas, low-density residential areas, industrial and commercial areas, construction sites, roads, streets, parks, golf courses, forests, pasture, water and two types of agricultural crops. In this research, various polarimetric SAR parameters were evaluated for urban land cover mapping. They include the parameters from Pauli, Freeman and Cloude-Pottier decompositions, coherency matrix, intensities of each polarization and their logarithms.  Both object-based and pixel-based classification approaches were investigated. Through an object-based Support Vector Machine (SVM) and a rule-based approach, efficiencies of various PolSAR features and the multitemporal data combinations were evaluated. For the pixel-based approach, a contextual Stochastic Expectation-Maximization (SEM) algorithm was proposed. With an adaptive Markov Random Field (MRF) and a modified Multiscale Pappas Adaptive Clustering (MPAC), contextual information was explored to improve the mapping results. To take full advantages of alternative PolSAR distribution models, a rule-based model selection approach was put forward in comparison with a dictionary-based approach.  Moreover, the capability of multitemporal fine-beam PolSAR data was compared with multitemporal ultra-fine beam C-HH SAR data. Texture analysis and a rule-based approach which explores the object features and the spatial relationships were applied for further improvement. Using the proposed approaches, detailed urban land-cover classes and finer urban structures could be mapped with high accuracy in contrast to most of the previous studies which have only focused on the extraction of urban extent or the mapping of very few urban classes. It is also one of the first comparisons of various PolSAR parameters for detailed urban mapping using an object-based approach. Unlike other multitemporal studies, the significance of complementary information from both ascending and descending SAR data and the temporal relationships in the data were the focus in the multitemporal analysis. Further, the proposed novel contextual analyses could effectively improve the pixel-based classification accuracy and present homogenous results with preserved shape details avoiding over-averaging. The proposed contextual SEM algorithm, which is one of the first to combine the adaptive MRF and the modified MPAC, was able to mitigate the degenerative problem in the traditional EM algorithms with fast convergence speed when dealing with many classes. This contextual SEM outperformed the contextual SVM in certain situations with regard to both accuracy and computation time. By using such a contextual algorithm, the common PolSAR data distribution models namely Wishart, G0p, Kp and KummerU were compared for detailed urban mapping in terms of both mapping accuracy and time efficiency. In the comparisons, G0p, Kp and KummerU demonstrated better performances with higher overall accuracies than Wishart. Nevertheless, the advantages of Wishart and the other models could also be effectively integrated by the proposed rule-based adaptive model selection, while limited improvement could be observed by the dictionary-based selection, which has been applied in previous studies. The use of polarimetric SAR data for identifying various urban classes was then compared with the ultra-fine-beam C-HH SAR data. The grey level co-occurrence matrix textures generated from the ultra-fine-beam C-HH SAR data were found to be more efficient than the corresponding PolSAR textures for identifying urban areas from rural areas. An object-based and pixel-based fusion approach that uses ultra-fine-beam C-HH SAR texture data with PolSAR data was developed. In contrast to many other fusion approaches that have explored pixel-based classification results to improve object-based classifications, the proposed rule-based fusion approach using the object features and contextual information was able to extract several low backscatter classes such as roads, streets and parks with reasonable accuracy. / <p>QC 20121112</p>
8

Multidimensional speckle noise. Modelling and filtering related to sar data.

López Martinez, Carlos 02 June 2003 (has links)
Los Radares de Apertura Sintética, o sistemas SAR, representan el mejorejemplo de sistemas activos de teledetección por microondas. Debido a su naturaleza coherente, un sistema SAR es capaz de adquirir información dedispersión electromagnética con una alta resolución espacial, pero por otro lado, esta naturaleza coherente provoca también la aparición de speckle.A pesar de que el speckle es una medida electromagnética, sólo puede ser analizada como una componente de ruido debido a la complejidad asociadacon el proceso de dispersión electromagnética.Para eliminar los efectos del ruido speckle adecuadamente, es necesario un modelo de ruido, capaz de identificar las fuentes de ruido y como éstasdegradan la información útil. Mientras que este modelo existe para sistemasSAR unidimensionales, conocido como modelo de ruido speckle multiplicativo,éste no existe en el caso de sistemas SAR multidimensionales.El trabajo presentado en esta tesis presenta la definición y completa validación de nuevos modelos de ruido speckle para sistemas SAR multidimensionales,junto con su aplicación para la reducción de ruido speckle y la extracción de información.En esta tesis, los datos SAR multidimensionales, se consideran bajo una formulación basada en la matriz de covarianza, ya que permite el análisisde datos sobre la base del producto complejo Hermítico de pares de imágenesSAR. Debido a que el mantenimiento de la resolución especial es un aspectoimportante del procesado de imágenes SAR, la reducción de ruido speckleestá basada, en este trabajo, en la teoría de análisis wavelet.
9

Modelos de mistura de distribuições na segmentação de imagens SAR polarimétricas multi-look / Multi-look polarimetric SAR image segmentation using mixture models

Michelle Matos Horta 04 June 2009 (has links)
Esta tese se concentra em aplicar os modelos de mistura de distribuições na segmentação de imagens SAR polarimétricas multi-look. Dentro deste contexto, utilizou-se o algoritmo SEM em conjunto com os estimadores obtidos pelo método dos momentos para calcular as estimativas dos parâmetros do modelo de mistura das distribuições Wishart, Kp ou G0p. Cada uma destas distribuições possui parâmetros específicos que as diferem no ajuste dos dados com graus de homogeneidade variados. A distribuição Wishart descreve bem regiões com características mais homogêneas, como cultivo. Esta distribuição é muito utilizada na análise de dados SAR polarimétricos multi-look. As distribuições Kp e G0p possuem um parâmetro de rugosidade que as permitem descrever tanto regiões mais heterogêneas, como vegetação e áreas urbanas, quanto regiões homogêneas. Além dos modelos de mistura de uma única família de distribuições, também foi analisado o caso de um dicionário contendo as três famílias. Há comparações do método SEM proposto para os diferentes modelos com os métodos da literatura k-médias e EM utilizando imagens reais da banda L. O método SEM com a mistura de distribuições G0p forneceu os melhores resultados quando os outliers da imagem são desconsiderados. A distribuição G0p foi a mais flexível ao ajuste dos diferentes tipos de alvo. A distribuição Wishart foi robusta às diferentes inicializações. O método k-médias com a distribuição Wishart é robusto à segmentação de imagens contendo outliers, mas não é muito flexível à variabilidade das regiões heterogêneas. O modelo de mistura do dicionário de famílias melhora a log-verossimilhança do método SEM, mas apresenta resultados parecidos com os do modelo de mistura G0p. Para todos os tipos de inicialização e grupos, a distribuição G0p predominou no processo de seleção das distribuições do dicionário de famílias. / The main focus of this thesis consists of the application of mixture models in multi-look polarimetric SAR image segmentation. Within this context, the SEM algorithm, together with the method of moments, were applied in the estimation of the Wishart, Kp and G0p mixture model parameters. Each one of these distributions has specific parameters that allows fitting data with different degrees of homogeneity. The Wishart distribution is suitable for modeling homogeneous regions, like crop fields for example. This distribution is widely used in multi-look polarimetric SAR data analysis. The distributions Kp and G0p have a roughness parameter that allows them to describe both heterogeneous regions, as vegetation and urban areas, and homogeneous regions. Besides adopting mixture models of a single family of distributions, the use of a dictionary with all the three family of distributions was proposed and analyzed. Also, a comparison between the performance of the proposed SEM method, considering the different models in real L-band images and two widely known techniques described in literature (k-means and EM algorithms), are shown and discussed. The proposed SEM method, considering a G0p mixture model combined with a outlier removal stage, provided the best classication results. The G0p distribution was the most flexible for fitting the different kinds of data. The Wishart distribution was robust for different initializations. The k-means algorithm with Wishart distribution is robust for segmentation of SAR images containing outliers, but it is not so flexible to variabilities in heterogeneous regions. The mixture model considering the dictionary of distributions improves the SEM method log-likelihood, but presents similar results to those of G0p mixture model. For all types of initializations and clusters, the G0p prevailed in the distribution selection process of the dictionary of distributions.
10

Spatially Adaptive Analysis and Segmentation of Polarimetric SAR Data

Wang, Wei January 2017 (has links)
In recent years, Polarimetric Synthetic Aperture Radar (PolSAR) has been one of the most important instruments for earth observation, and is increasingly used in various remote sensing applications. Statistical modelling and scattering analysis are two main ways for PolSAR data interpretation, and have been intensively investigated in the past two decades. Moreover, spatial analysis was applied in the analysis of PolSAR data and found to be beneficial to achieve more accurate interpretation results. This thesis focuses on extracting typical spatial information, i.e., edges and regions by exploring the statistical characteristics of PolSAR data. The existing spatial analysing methods are mainly based on the complex Wishart distribution, which well characterizes the inherent statistical features in homogeneous areas. However, the non-Gaussian models can give better representation of the PolSAR statistics, and therefore have the potential to improve the performance of spatial analysis, especially in heterogeneous areas. In addition, the traditional fixed-shape windows cannot accurately estimate the distribution parameter in some complicated areas, leading to the loss of the refined spatial details. Furthermore, many of the existing methods are not spatially adaptive so that the obtained results are promising in some areas whereas unsatisfactory in other areas. Therefore, this thesis is dedicated to extracting spatial information by applying the non-Gaussian statistical models and spatially adaptive strategies. The specific objectives of the thesis include: (1) to develop reliable edge detection method, (2) to develop spatially adaptive superpixel generation method, and (3) to investigate a new framework of region-based segmentation. Automatic edge detection plays a fundamental role in spatial analysis, whereas the performance of classical PolSAR edge detection methods is limited by the fixed-shape windows. Paper 1 investigates an enhanced edge detection method using the proposed directional span-driven adaptive (DSDA) window. The DSDA window has variable sizes and flexible shapes, and can overcome the limitation of fixed-shape windows by adaptively selecting homogeneous samples. The spherically invariant random vector (SIRV) product model is adopted to characterize the PolSAR data, and a span ratio is combined with the SIRV distance to highlight the dissimilarity measure. The experimental results demonstrated that the proposed method can detect not only the obvious edges, but also the tiny and inconspicuous edges in heterogeneous areas. Edge detection and region segmentation are two important aspects of spatial analysis. As to the region segmentation, paper 2 presents an adaptive PolSAR superpixel generation method based on the simple linear iterative clustering (SLIC) framework. In the k-means clustering procedure, multiple cues including polarimetric, spatial, and texture information are considered to measure the distance. Since the constant weighting factor which balances the spectral similarity and spatial proximity may cause over- or under-superpixel segmentation in different areas, the proposed method sets the factor adaptively based on the homogeneity analysis. Then, in heterogeneous areas, the spectral similarity is more significant than the spatial constraint, generating superpixels which better preserved local details and refined structures. Paper 3 investigates another PolSAR superpixel generation method, which is achieved from the global optimization aspect, using the entropy rate method. The distance between neighbouring pixels is calculated based on their corresponding DSDA regions. In addition, the SIRV distance and the Wishart distance are combined together. Therefore, the proposed method makes good use of the entropy rate framework, and also incorporates the merits of the SIRV distance and the Wishart distance. The superpixels are generated in a homogeneity-adaptive manner, resulting in smooth representation of the land covers in homogeneous areas, and well preserved details in heterogeneous areas. / <p>QC 20171123</p>

Page generated in 0.0466 seconds