• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 9
  • 9
  • 9
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Random Forest Based Method for Urban Land Cover Classification using LiDAR Data and Aerial Imagery

Jin, Jiao 22 May 2012 (has links)
Urban land cover classification has always been crucial due to its ability to link many elements of human and physical environments. Timely, accurate, and detailed knowledge of the urban land cover information derived from remote sensing data is increasingly required among a wide variety of communities. This surge of interest has been predominately driven by the recent innovations in data, technologies, and theories in urban remote sensing. The development of light detection and ranging (LiDAR) systems, especially incorporated with high-resolution camera component, has shown great potential for urban classification. However, the performance of traditional and widely used classification methods is limited in this context, due to image interpretation complexity. On the other hand, random forests (RF), a newly developed machine learning algorithm, is receiving considerable attention in the field of image classification and pattern recognition. Several studies have shown the advantages of RF in land cover classification. However, few have focused on urban areas by fusion of LiDAR data and aerial images. The performance of the RF based feature selection and classification methods for urban areas was explored and compared to other popular feature selection approach and classifiers. Evaluation was based on several criteria: classification accuracy, impact of different training sample size, and computational speed. LiDAR data and aerial imagery with 0.5-m resolution were used to classify four land categories in the study area located in the City of Niagara Falls (ON, Canada). The results clearly demonstrate that the use of RF improved the classification performance in terms of accuracy and speed. Support vector machines (SVM) based and RF based classifiers showed similar accuracies. However, RF based classifiers were much quicker than SVM based methods. Based on the results from this work, it can be concluded that the RF based method holds great potential for recent and future urban land cover classification problem with LiDAR data and aerial images.
2

A Random Forest Based Method for Urban Land Cover Classification using LiDAR Data and Aerial Imagery

Jin, Jiao 22 May 2012 (has links)
Urban land cover classification has always been crucial due to its ability to link many elements of human and physical environments. Timely, accurate, and detailed knowledge of the urban land cover information derived from remote sensing data is increasingly required among a wide variety of communities. This surge of interest has been predominately driven by the recent innovations in data, technologies, and theories in urban remote sensing. The development of light detection and ranging (LiDAR) systems, especially incorporated with high-resolution camera component, has shown great potential for urban classification. However, the performance of traditional and widely used classification methods is limited in this context, due to image interpretation complexity. On the other hand, random forests (RF), a newly developed machine learning algorithm, is receiving considerable attention in the field of image classification and pattern recognition. Several studies have shown the advantages of RF in land cover classification. However, few have focused on urban areas by fusion of LiDAR data and aerial images. The performance of the RF based feature selection and classification methods for urban areas was explored and compared to other popular feature selection approach and classifiers. Evaluation was based on several criteria: classification accuracy, impact of different training sample size, and computational speed. LiDAR data and aerial imagery with 0.5-m resolution were used to classify four land categories in the study area located in the City of Niagara Falls (ON, Canada). The results clearly demonstrate that the use of RF improved the classification performance in terms of accuracy and speed. Support vector machines (SVM) based and RF based classifiers showed similar accuracies. However, RF based classifiers were much quicker than SVM based methods. Based on the results from this work, it can be concluded that the RF based method holds great potential for recent and future urban land cover classification problem with LiDAR data and aerial images.
3

A Comparison of Two Common Classification Procedures for Economical Urban Land Cover Mapping Using NAIP Imagery

Simons, Kent Lowell 17 March 2009 (has links) (PDF)
Detailed urban land cover maps are increasingly useful and important applications of remote sensing. Municipal agencies and others use land cover maps and data for numerous critical local planning and monitoring functions and for urban geographical research studies. Because of this, there is a demand for accurate urban land cover maps that can be produced quickly and economically. The availability of very high resolution multispectral imagery is an important factor in enabling such production, as the judicious selection of source imagery has a large impact on the resulting map products. Likewise, the implementation of appropriate digital image processing methods is crucial for deriving urban land cover maps of acceptable accuracy and cost. This study compared two common image classification algorithms using 2006 NAIP 1-meter GSD CIR images of Orem and Provo, Utah. The two classification procedures – conventional per-pixel supervised classification coupled with post-classification filtering, and object-based feature extraction – were compared for resulting accuracy and, in general terms, for their cost-effectiveness. Results demonstrated that object-based feature extraction has the potential to produce maps with better accuracy, but at a somewhat higher cost than per-pixel supervised classification. Classification errors and their probable causes are discussed; also a number of options for improving the classification accuracy are presented together with considerations of the potential costs involved. Although the ultimate goal of economical production of accurate urban land cover maps was not fully realized, this study nevertheless has established a cost containment baseline upon which methodological improvements can be built.
4

Multitemporal Spaceborne Polarimetric SAR Data for Urban Land Cover Mapping

Niu, Xin January 2011 (has links)
Urban represents one of the most dynamic areas in the global change context. To support rational policies for sustainable urban development, remote sensing technologies such as Synthetic Aperture Radar (SAR) enjoy increasing popularity for collecting up-to-date and reliable information such as urban land cover/land-use. With the launch of advanced spaceborne SAR sensors such as RADARSAT-2, multitemporal fully polarimetric SAR data in high-resolution become increasingly available. Therefore, development of new methodologies to analyze such data for detailed and accurate urban mapping is in demand.   This research investigated multitemporal fine resolution spaceborne polarimetric SAR (PolSAR) data for detailed urban land cover mapping. To this end, the north and northwest parts of the Greater Toronto Area (GTA), Ontario, Canada were selected as the study area. Six-date C-band RADARSAT-2 fine-beam full polarimetric SAR data were acquired during June to September in 2008. Detailed urban land covers and various natural classes were focused in this study.   Both object-based and pixel-based classification schemes were investigated for detailed urban land cover mapping. For the object-based approaches, Support Vector Machine (SVM) and rule-based classification method were combined to evaluate the classification capacities of various polarimetric features. Classification efficiencies of various multitemporal data combination forms were assessed. For the pixel-based approach, a temporal-spatial Stochastic Expectation-Maximization (SEM) algorithm was proposed. With an adaptive Markov Random Field (MRF) analysis and multitemporal mixture models, contextual information was explored in the classification process. Moreover, the fitness of alternative data distribution assumptions of multi-look PolSAR data were compared for detailed urban mapping by this algorithm.   Both the object-based and pixel-based classifications could produce the finer urban structures with high accuracy. The superiority of SVM was demonstrated by comparison with the Nearest Neighbor (NN) classifier in object-based cases. Efficient polarimetric parameters such as Pauli parameters and processing approaches such as logarithmically scaling of the data were found to be useful to improve the classification results. Combination of both the ascending and descending data with appropriate temporal span are suitable for urban land cover mapping. The SEM algorithm could preserve the detailed urban features with high classification accuracy while simultaneously overcoming the speckles. Additionally the fitness of the G0p and Kp distribution assumptions were demonstrated better than the Wishart one. / <p>QC 20110315</p>
5

Radar and Optical Data Fusion for Object Based Urban Land Cover Mapping / Radar och optisk datafusion för objektbaserad kartering av urbant marktäcke

Jacob, Alexander January 2011 (has links)
The creation and classification of segments for object based urban land cover mapping is the key goal of this master thesis. An algorithm based on region growing and merging was developed, implemented and tested. The synergy effects of a fused data set of SAR and optical imagery were evaluated based on the classification results. The testing was mainly performed with data of the city of Beijing China. The dataset consists of SAR and optical data and the classified land cover/use maps were evaluated using standard methods for accuracy assessment like confusion matrices, kappa values and overall accuracy. The classification for the testing consists of 9 classes which are low density buildup, high density buildup, road, park, water, golf course, forest, agricultural crop and airport. The development was performed in JAVA and a suitable graphical interface for user friendly interaction was created parallel to the development of the algorithm. This was really useful during the period of extensive testing of the parameter which easily could be entered through the dialogs of the interface. The algorithm itself treats the pixels as a connected graph of pixels which can always merge with their direct neighbors, meaning sharing an edge with those. There are three criteria that can be used in the current state of the algorithm, a mean based spectral homogeneity measure, a variance based textural homogeneity measure and fragmentation test as a shape measure. The algorithm has 3 key parameters which are the minimum and maximum segments size as well as a homogeneity threshold measure which is based on a weighted combination of relative change due to merging two segments. The growing and merging is divided into two phases the first one is based on mutual best partner merging and the second one on the homogeneity threshold. In both phases it is possible to use all three criteria for merging in arbitrary weighting constellations. A third step is the check for the fulfillment of minimum size which can be performed prior to or after the other two steps. The segments can then in a supervised manner be labeled interactively using once again the graphical user interface for creating a training sample set. This training set can be used to derive a support vector machine which is based on a radial base function kernel. The optimal settings for the required parameters of this SVM training process can be found from a cross-validation grid search process which is implemented within the program as well. The SVM algorithm is based on the LibSVM java implementation. Once training is completed the SVM can be used to predict the whole dataset to get a classified land-cover map. It can be exported in form of a vector dataset. The results yield that the incorporation of texture features already in the segmentation is superior to spectral information alone especially when working with unfiltered SAR data. The incorporation of the suggested shape feature however doesn’t seem to be of advantage, especially when taking the much longer processing time into account, when incorporating this criterion. From the classification results it is also evident, that the fusion of SAR and optical data is beneficial for urban land cover mapping. Especially the distinction of urban areas and agricultural crops has been improved greatly but also the confusion between high and low density could be reduced due to the fusion. / Dragon 2 Project
6

Multitemporal Spaceborne Polarimetric SAR Data for Urban Land Cover Mapping

Niu, Xin January 2012 (has links)
Urban land cover mapping represents one of the most important remote sensing applications in the context of rapid global urbanization. In recent years, high resolution spaceborne Polarimetric Synthetic Aperture Radar (PolSAR) has been increasingly used for urban land cover/land-use mapping, since more information could be obtained in multiple polarizations and the collection of such data is less influenced by solar illumination and weather conditions.  The overall objective of this research is to develop effective methods to extract accurate and detailed urban land cover information from spaceborne PolSAR data. Six RADARSAT-2 fine-beam polarimetric SAR and three RADARSAT-2 ultra-fine beam SAR images were used. These data were acquired from June to September 2008 over the north urban-rural fringe of the Greater Toronto Area, Canada. The major landuse/land-cover classes in this area include high-density residential areas, low-density residential areas, industrial and commercial areas, construction sites, roads, streets, parks, golf courses, forests, pasture, water and two types of agricultural crops. In this research, various polarimetric SAR parameters were evaluated for urban land cover mapping. They include the parameters from Pauli, Freeman and Cloude-Pottier decompositions, coherency matrix, intensities of each polarization and their logarithms.  Both object-based and pixel-based classification approaches were investigated. Through an object-based Support Vector Machine (SVM) and a rule-based approach, efficiencies of various PolSAR features and the multitemporal data combinations were evaluated. For the pixel-based approach, a contextual Stochastic Expectation-Maximization (SEM) algorithm was proposed. With an adaptive Markov Random Field (MRF) and a modified Multiscale Pappas Adaptive Clustering (MPAC), contextual information was explored to improve the mapping results. To take full advantages of alternative PolSAR distribution models, a rule-based model selection approach was put forward in comparison with a dictionary-based approach.  Moreover, the capability of multitemporal fine-beam PolSAR data was compared with multitemporal ultra-fine beam C-HH SAR data. Texture analysis and a rule-based approach which explores the object features and the spatial relationships were applied for further improvement. Using the proposed approaches, detailed urban land-cover classes and finer urban structures could be mapped with high accuracy in contrast to most of the previous studies which have only focused on the extraction of urban extent or the mapping of very few urban classes. It is also one of the first comparisons of various PolSAR parameters for detailed urban mapping using an object-based approach. Unlike other multitemporal studies, the significance of complementary information from both ascending and descending SAR data and the temporal relationships in the data were the focus in the multitemporal analysis. Further, the proposed novel contextual analyses could effectively improve the pixel-based classification accuracy and present homogenous results with preserved shape details avoiding over-averaging. The proposed contextual SEM algorithm, which is one of the first to combine the adaptive MRF and the modified MPAC, was able to mitigate the degenerative problem in the traditional EM algorithms with fast convergence speed when dealing with many classes. This contextual SEM outperformed the contextual SVM in certain situations with regard to both accuracy and computation time. By using such a contextual algorithm, the common PolSAR data distribution models namely Wishart, G0p, Kp and KummerU were compared for detailed urban mapping in terms of both mapping accuracy and time efficiency. In the comparisons, G0p, Kp and KummerU demonstrated better performances with higher overall accuracies than Wishart. Nevertheless, the advantages of Wishart and the other models could also be effectively integrated by the proposed rule-based adaptive model selection, while limited improvement could be observed by the dictionary-based selection, which has been applied in previous studies. The use of polarimetric SAR data for identifying various urban classes was then compared with the ultra-fine-beam C-HH SAR data. The grey level co-occurrence matrix textures generated from the ultra-fine-beam C-HH SAR data were found to be more efficient than the corresponding PolSAR textures for identifying urban areas from rural areas. An object-based and pixel-based fusion approach that uses ultra-fine-beam C-HH SAR texture data with PolSAR data was developed. In contrast to many other fusion approaches that have explored pixel-based classification results to improve object-based classifications, the proposed rule-based fusion approach using the object features and contextual information was able to extract several low backscatter classes such as roads, streets and parks with reasonable accuracy. / <p>QC 20121112</p>
7

Urban Land-cover Mapping with High-resolution Spaceborne SAR Data

Hu, Hongtao January 2010 (has links)
Urban areas around the world are changing constantly and therefore it is necessary to update urban land cover maps regularly. Remote sensing techniques have been used to monitor changes and update land-use/land-cover information in urban areas for decades. Optical imaging systems have received most of the attention in urban studies. The development of SAR applications in urban monitoring has been accelerated with more and more advanced SAR systems operating in space.   This research investigated object-based and rule-based classification methodologies for extracting urban land-cover information from high resolution SAR data. The study area is located in the north and northwest part of the Greater Toronto Area (GTA), Ontario, Canada, which has been undergoing rapid urban growth during the past decades. Five-date RADARSAT-1 fine-beam C-HH SAR images with a spatial resolution of 10 meters were acquired during May to August in 2002. Three-date RADARSAT-2 ultra-fine-beam C-HH SAR images with a spatial resolution of 3 meters were acquired during June to September in 2008.   SAR images were pre-processed and then segmented using multi-resolution segmentation algorithm. Specific features such as geometric and texture features were selected and calculated for image objects derived from the segmentation of SAR images. Both neural network (NN) and support vector machines (SVM) were investigated for the supervised classification of image objects of RADARSAT-1 SAR images, while SVM was employed to classify image objects of RADARSAT-2 SAR images. Knowledge-based rules were developed and applied to resolve the confusion among some classes in the object-based classification results.   The classification of both RADARSAT-1 and RADARSAT-2 SAR images yielded relatively high accuracies (over 80%). SVM classifier generated better result than NN classifier for the object-based supervised classification of RADARSAT-1 SAR images. Well-designed knowledge-based rules could increase the accuracies of some classes after the object-based supervised classification. The comparison of the classification results of RADARSAT-1 and RADARSAT-2 SAR images showed that SAR images with higher resolution could reveal more details, but might produce lower classification accuracies for certain land cover classes due to the increasing complexity of the images. Overall, the classification results indicate that the proposed object-based and rule-based approaches have potential for operational urban land cover mapping from high-resolution space borne SAR images. / QC 20101209
8

Multitemporal Remote Sensing for Urban Mapping using KTH-SEG and KTH-Pavia Urban Extractor

Jacob, Alexander January 2014 (has links)
The objective of this licentiate thesis is to develop novel algorithms and improve existing methods for urban land cover mapping and urban extent extraction using multi-temporal remote sensing imagery. Past studies have demonstrated that synthetic aperture radar (SAR) have very good properties for the analysis of urban areas, the synergy of SAR and optical data is advantageous for various applications. The specific objectives of this research are: 1. To develop a novel edge-aware region-growing and -merging algorithm, KTH-SEG, for effective segmentation of SAR and optical data for urban land cover mapping; 2. To evaluate the synergistic effects of multi-temporal ENVISAT ASAR and HJ-1B multi-spectral data for urban land cover mapping; 3. To improve the robustness of an existing method for urban extent extraction by adding effective pre- and post-processing. ENVISAT ASAR data and the Chinese HJ-1B multispectral , as well as TerraSAR-X data were used in this research. For objectives 1 and 2 two main study areas were chosen, Beijing and Shanghai, China. For both sites a number of multitemporal ENVISAT ASAR (30m C-band) scenes with varying image characteristics were selected during the vegetated season of 2009. For Shanghai TerraSAR-X strip-map images at 3m resolution X-band) were acquired for a similar period in 2010 to also evaluate high resolution X-band SAR for urban land cover mapping. Ten  major landcover classes were extracted including high density built-up, low density built-up, bare field, low vegetation, forest, golf course, grass, water, airport runway and major road. For Objective 3, eleven globally distributed study areas where chosen, Berlin, Beijing, Jakarta, Lagos, Lombardia (northern Italy), Mexico City, Mumbai, New York City, Rio de Janeiro, Stockholm and Sydney. For all cities ENVISAT ASAR imagery was acquired and for cities in or close to mountains even SRTM digital elevation data. The methodology of this thesis includes two major components, KTH-SEG and KTH-Pavia Urban Extractor. KTH-SEG is an edge aware region-growing and -merging algorithm that utilizes both the benefit of finding local high frequency changes as well as determining robustly homogeneous areas of a low frequency in local change. The post-segmentation classification is performed using support vector machines. KTH-SEG was evaluated using multitemporal, multi-angle, dual-polarization ASAR data and multispectral HJ-1B data as well as TerraSAR-X data. The KTH-Pavia urban extractor is a processing chain. It includes: Geometrical corrections, contrast enhancement, builtup area extraction using spatial stastistics and GLCM texture features, logical operator based fusion and DEM based mountain masking. For urban land cover classification using multitemporal ENVISAT ASAR data, the results showed that KTH-SEG achieved an overall accuracy of almost 80% (0.77 Kappa ) for the 10 urban land cover classes both Beijign and Shanghai, compared to eCognition results of 75% (0.71 Kappa) In particular the detection of small linear features with respect to the image resolution such as roads in 30m resolved data went well with 83% user accuracy from KTH-SEG versus 57% user accuracy using the segments derived from eCognition. The other urban classes which in particular in SAR imagery are characterized by a high degree of heterogeneity were classified superiorly by KTH-SEG. ECognition in general performed better on vegetation classes such as grass, low vegetation and forest which are usually more homogeneous. It is was also found that the combination of ASAR and HJ-1B optical data was beneficial, increasing the final classification accuracy by at least 10% compared to ASAR or HJ-1B data alone. The results also further confirmed that a higher diversity of SAR type images is more important for the urban classification outcome. However, this is not the case when classifying high resolution TerraSAR-X strip-map imagery. Here the different image characteristics of different look angles, and orbit orientation created more confusion mainly due to the different layover and foreshortening effects on larger buildings. The TerraSAR-X results showed also that accurate urban classification can be achieved using high resolution SAR data alone with almost 84% for  eight classes around the Shanghai international Airport (high and low density built-up were not separated as well as roads and runways). For urban extent extraction, the results demonstrated that built-up areas can be effectively extracted using a single ENVISAT ASAR image in 10 global cities reaching overall accuracies around 85%, compared to 75% of MODIS urban class and 73% GlobCover Urban class. Multitemporal ASAR can improve the urban extraction results by 5-10% in Beijing. Mountain masking applied in Mumbai and Rio de Janeiro increased the accuracy by 3-5%.The research performed in  this thesis has contributed to the remote sensing community by providing algorithms and methods for both extracting urban areas and identifying urban land cover in a more detailed fashion. / <p>QC 20140625</p>
9

Quantifying urban land cover by means of machine learning and imaging spectrometer data at multiple spatial scales

Okujeni, Akpona 15 December 2014 (has links)
Das weltweite Ausmaß der Urbanisierung zählt zu den großen ökologischen Herausforderungen des 21. Jahrhunderts. Die Fernerkundung bietet die Möglichkeit das Verständnis dieses Prozesses und seiner Auswirkungen zu erweitern. Der Fokus dieser Arbeit lag in der Quantifizierung der städtischen Landbedeckung mittels Maschinellen Lernens und räumlich unterschiedlich aufgelöster Hyperspektraldaten. Untersuchungen berücksichtigten innovative methodische Entwicklungen und neue Möglichkeiten, die durch die bevorstehende Satellitenmission EnMAP geschaffen werden. Auf Basis von Bilder des flugzeugestützten HyMap Sensors mit Auflösungen von 3,6 m und 9 m sowie simulierten EnMAP-Daten mit einer Auflösung von 30 m wurde eine Kartierung entlang des Stadt-Umland-Gradienten Berlins durchgeführt. Im ersten Teil der Arbeit wurde die Kombination von Support Vektor Regression mit synthetischen Trainingsdaten für die Subpixelkartierung eingeführt. Ergebnisse zeigen, dass sich der Ansatz gut zur Quantifizierung thematisch relevanter und spektral komplexer Oberflächenarten eignet, dass er verbesserte Ergebnisse gegenüber weiteren Subpixelverfahren erzielt, und sich als universell einsetzbar hinsichtlich der räumlichen Auflösung erweist. Im zweiten Teil der Arbeit wurde der Wert zukünftiger EnMAP-Daten für die städtische Fernerkundung abgeschätzt. Detaillierte Untersuchungen unterstreichen deren Eignung für eine verbesserte und erweiterte Beschreibung der Stadt nach dem bewährten Vegetation-Impervious-Soil-Schema. Analysen der Möglichkeiten und Grenzen zeigen sowohl Nachteile durch die höhere Anzahl von Mischpixel im Vergleich zu hyperspektralen Flugzeugdaten als auch Vorteile aufgrund der verbesserten Differenzierung städtischer Materialien im Vergleich zu multispektralen Daten. Insgesamt veranschaulicht diese Arbeit, dass die Kombination von hyperspektraler Satellitenbildfernerkundung mit Methoden des Maschinellen Lernens eine neue Qualität in die städtische Fernerkundung bringen kann. / The global dimension of urbanization constitutes a great environmental challenge for the 21st century. Remote sensing is a valuable Earth observation tool, which helps to better understand this process and its ecological implications. The focus of this work was to quantify urban land cover by means of machine learning and imaging spectrometer data at multiple spatial scales. Experiments considered innovative methodological developments and novel opportunities in urban research that will be created by the upcoming hyperspectral satellite mission EnMAP. Airborne HyMap data at 3.6 m and 9 m resolution and simulated EnMAP data at 30 m resolution were used to map land cover along an urban-rural gradient of Berlin. In the first part of this work, the combination of support vector regression with synthetically mixed training data was introduced as sub-pixel mapping technique. Results demonstrate that the approach performs well in quantifying thematically meaningful yet spectrally challenging surface types. The method proves to be both superior to other sub-pixel mapping approaches and universally applicable with respect to changes in spatial scales. In the second part of this work, the value of future EnMAP data for urban remote sensing was evaluated. Detailed explorations on simulated data demonstrate their suitability for improving and extending the approved vegetation-impervious-soil mapping scheme. Comprehensive analyses of benefits and limitations of EnMAP data reveal both challenges caused by the high numbers of mixed pixels, when compared to hyperspectral airborne imagery, and improvements due to the greater material discrimination capability when compared to multispectral spaceborne imagery. In summary, findings demonstrate how combining spaceborne imaging spectrometry and machine learning techniques could introduce a new quality to the field of urban remote sensing.

Page generated in 0.0454 seconds