• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fabricação de scaffolds de polímero reforçado para aplicação na bioengenharia tecidual / Manufacture of reinforced polymer scaffolds for application in tissue bioengineering

Barbosa, Talita Villa 10 December 2018 (has links)
No presente trabalho, suportes tridimensionais (scaffolds) de polímero reforçado foram gerados por meio da técnica aditiva por extrusão utilizando duas estratégias de deposição e, posteriormente, foram avaliados morfologicamente, mecanicamente e por meio de ensaios in vitro. Como matriz polimérica do compósito utilizou-se a poli(ε-caprolactona) e como reforço, o Biovidro® 45S5. De forma a melhorar a interação interfacial entre a matriz polimérica e a cerâmica, avaliou-se a incorporação de nanofibra de celulose ao biovidro. Os scaffolds foram fabricados seguindo dois métodos diferentes. O primeiro consistiu no pré-processamento do material em extrusora monorrosca, seguida de extrusão direta na impressora 3D experimental Fab@CTI. O segundo consistiu em um único processo de extrusão diretamente no cabeçote de extrusão. A caracterização química do biovidro por espectroscopia de fluorescência de raios-x mostrou eficiência na preparação da biocerâmica e a caracterização da distribuição do tamanho de partícula por espalhamento de luz dinâmica mostrou a obtenção de partículas submicrométricas. Os scaffolds foram caracterizados morfologicamente pela técnica de microscopia eletrônica de varredura, e, pôde-se notar a eficiência na fabricação de geometrias com arquitetura 00/900 e tamanho de poros adequado para a aplicação na engenharia tecidual. Os ensaios mecânicos de compressão evidenciaram melhoras na rigidez com o aumento do teor de biovidro, no caso dos materiais pré-processados por extrusão, além da influência da nanofibra de celulose na melhoria das propriedades mecânicas. Os ensaios biológicos in vitro mostraram que os scaffolds suportam proliferação celular e que o biovidro é responsável pela maior deposição de sais de cálcio extracelular, facilitando a interação do material sintetizado com o tecido ósseo. / In the present work, scaffolds of reinforced polymer were generated by means of the extrusion additive technique using two strategies of deposition and, later, were evaluated morphologically, mechanically and by means of in vitro tests. Poly (ε-caprolactone) was used as the polymer matrix of the composite and as a booster, Bioglass® 45S5. In order to improve the interfacial interaction between the polymer matrix and the ceramic, the incorporation of cellulose nanofiber to the bioglass was evaluated. The scaffolds were manufactured following two different methods. The first consisted of the pre-processing of the extruded extruder material followed by direct extrusion into the experimental Fab@CTI 3D printer. The second consisted of a single extrusion process directly on the extrusion head. The chemical characterization of the bioglass by x-ray fluorescence spectroscopy showed efficiency in the preparation of the bioceramics and the characterization of the particle size distribution by dynamic light scattering showed the submicrometric particles. The scaffolds were characterized morphologically by the scanning electron microscopy technique, and it was noted the efficiency in the manufacture of geometries with architecture 00/900 and pore size suitable for application in tissue engineering. The mechanical compression tests showed improvements in stiffness with increasing bioglass content in the case of pre-processed materials by extrusion, as well as the influence of cellulose nanofiber in improving mechanical properties. Biological assays have shown that scaffolds support cell proliferation and that bioglass is responsible for the increased deposition of extracellular calcium salts, facilitating the interaction of the synthesized material with the bone tissue.
2

Preparação de compósitos biodegradáveis de PCL reforçados com microfibrilas de PLA obtidas a partir do controle da morfologia de blendas imiscíveis PLA/PCL / Preparation of biodegradable PCL composites reinforced with PLA microfibrils obtained from the morphology of PLA/PCL immiscible blends control

Ferreira, Thaysa Rodrigues Mendes 29 October 2018 (has links)
O objetivo desse trabalho foi preparar compósitos de matriz de PCL reforçados com microfibrilas de PLA preparadas in situ a partir do controle da morfologia de blendas PLA/PCL. Embora a formação da morfologia fibrilar não tenha sido observada nas condições de extrusão empregadas, estudos do comportamento reológico de blendas de composição 50% PLA / 45% PCL / 5% de compatibilizante (% em massa) mostraram que microfibrilas de PLA podem ser obtidas entre 102 e 104 s-1. Assim, a técnica de reometria capilar foi utilizada para controlar a morfologia de blendas PLA/PCL. Compósitos de matriz de PCL reforçados com 5, 10, 20 e 30% (% em massa) de microfibrilas de PLA foram preparados em extrusora rosca simples, utilizando perfil de temperatura acima da temperatura de fusão do PCL, mas abaixo da temperatura de fusão do PLA, visando preservar a morfologia do PLA. O comportamento morfológico, térmico e mecânico dos compósitos foram avaliados por microscopia eletrônica de varredura (MEV), microscopia óptica com luz polarizada (POM), calorimetria exploratória diferencial (DSC), análise térmica dinâmico-mecânica (DMA) e ensaios mecânicos de tração e de impacto Izod. As curvas DSC mostraram um aumento no grau de cristalinidade da matriz de PCL com o aumento do teor de microfibrilas, o que provavelmente justifica os altos valores de módulo de Young determinados nos compósitos. A aplicação da Regra das Misturas comprovou que os compósitos fabricados exibiram boa orientação das microfibrilas na direção do esforço mecânico aplicado, com valores de módulos próximos ao limite superior da curva. No entanto, a adesão não uniforme entre a matriz e o reforço observada por MEV, resultou na queda da resistência à tração e resistência ao impacto dos compósitos, quando comparados ao PCL puro. A composição com 10% de microfibrilas apresentou um bom balanço de módulo de Young e resistência ao impacto, com potencial de viabilidade em uma série de aplicações biomédicas. / The aim of this work is to prepare PCL composites reinforced with PLA microfibrils prepared in situ from the morphology of PLA/PCL blends control. Although the formation of fibrillar morphology has not been observed under the extrusion conditions employed, studies of the rheological behavior of 50% PLA/ 45% PCL / 5% compatibilizer blends have shown that PLA microfibrils can be obtained between 102 and 104 s-1. Thus, the capillary rheometry technique was used to control the morphology of PLA /PCL blends. PCL composites reinforced with 5, 10, 20 and 30% (% by mass) PLA microfibrils were prepared in a single screw extruder using a temperature profile above the PCL melting temperature, but below the melt temperature of PLA, to preserve the PLA morphology. The morphology, thermal and mechanical behavior of the composites were evaluated by scanning electron microscopy (SEM), optical polarized light microscopy (POM), differential scanning calorimetry (DSC), dynamic mechanical-mechanical analysis (DMA) and mechanical tensile tests and Izod impact. DSC curves showed an increase in the degree of crystallinity of the PCL matrix with increasing the PLA microfibrils content, which probably justify the high Young\'s modulus values determined in the composites. The application of the Mix Rule proved that the composites showed good orientation of the PLA microfibrils in the direction of applied mechanical stress, presenting modules values near the upper limit of the curve. However, the non-uniform adhesion between the matrix and the reinforcement observed by MEV, caused the decrease of the tensile and impact strength when compared to pure PCL. The composition with 10% of PLA microfibrils exhibited a good balance of Young\'s modulus and impact strength, with potential viability in a number of biomedical applications.
3

Fabricação de scaffolds de polímero reforçado para aplicação na bioengenharia tecidual / Manufacture of reinforced polymer scaffolds for application in tissue bioengineering

Talita Villa Barbosa 10 December 2018 (has links)
No presente trabalho, suportes tridimensionais (scaffolds) de polímero reforçado foram gerados por meio da técnica aditiva por extrusão utilizando duas estratégias de deposição e, posteriormente, foram avaliados morfologicamente, mecanicamente e por meio de ensaios in vitro. Como matriz polimérica do compósito utilizou-se a poli(ε-caprolactona) e como reforço, o Biovidro® 45S5. De forma a melhorar a interação interfacial entre a matriz polimérica e a cerâmica, avaliou-se a incorporação de nanofibra de celulose ao biovidro. Os scaffolds foram fabricados seguindo dois métodos diferentes. O primeiro consistiu no pré-processamento do material em extrusora monorrosca, seguida de extrusão direta na impressora 3D experimental Fab@CTI. O segundo consistiu em um único processo de extrusão diretamente no cabeçote de extrusão. A caracterização química do biovidro por espectroscopia de fluorescência de raios-x mostrou eficiência na preparação da biocerâmica e a caracterização da distribuição do tamanho de partícula por espalhamento de luz dinâmica mostrou a obtenção de partículas submicrométricas. Os scaffolds foram caracterizados morfologicamente pela técnica de microscopia eletrônica de varredura, e, pôde-se notar a eficiência na fabricação de geometrias com arquitetura 00/900 e tamanho de poros adequado para a aplicação na engenharia tecidual. Os ensaios mecânicos de compressão evidenciaram melhoras na rigidez com o aumento do teor de biovidro, no caso dos materiais pré-processados por extrusão, além da influência da nanofibra de celulose na melhoria das propriedades mecânicas. Os ensaios biológicos in vitro mostraram que os scaffolds suportam proliferação celular e que o biovidro é responsável pela maior deposição de sais de cálcio extracelular, facilitando a interação do material sintetizado com o tecido ósseo. / In the present work, scaffolds of reinforced polymer were generated by means of the extrusion additive technique using two strategies of deposition and, later, were evaluated morphologically, mechanically and by means of in vitro tests. Poly (ε-caprolactone) was used as the polymer matrix of the composite and as a booster, Bioglass® 45S5. In order to improve the interfacial interaction between the polymer matrix and the ceramic, the incorporation of cellulose nanofiber to the bioglass was evaluated. The scaffolds were manufactured following two different methods. The first consisted of the pre-processing of the extruded extruder material followed by direct extrusion into the experimental Fab@CTI 3D printer. The second consisted of a single extrusion process directly on the extrusion head. The chemical characterization of the bioglass by x-ray fluorescence spectroscopy showed efficiency in the preparation of the bioceramics and the characterization of the particle size distribution by dynamic light scattering showed the submicrometric particles. The scaffolds were characterized morphologically by the scanning electron microscopy technique, and it was noted the efficiency in the manufacture of geometries with architecture 00/900 and pore size suitable for application in tissue engineering. The mechanical compression tests showed improvements in stiffness with increasing bioglass content in the case of pre-processed materials by extrusion, as well as the influence of cellulose nanofiber in improving mechanical properties. Biological assays have shown that scaffolds support cell proliferation and that bioglass is responsible for the increased deposition of extracellular calcium salts, facilitating the interaction of the synthesized material with the bone tissue.

Page generated in 0.0869 seconds