• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Avaliação de comportamento térmico, morfológico e mecânico de blendas de PLA/PCL compatibilizadas por copolímero em bloco de baixa massa molar / Behavioral assessment of thermal behavior, morphological and mechanical behavior of biodegradeble blends PLA/PCL blends compatibilized by low molar mass block copolymer

Gimenes, Danielle Camargo 21 August 2017 (has links)
O poli(ácido láctico) (PLA) é um polímero biodegradável, biocompatível e bioabsorvível proveniente de fontes renováveis. Constitui uma excelente alternativa sustentável para substituição dos polímeros provenientes de petróleo, atualmente dominantes no mercado industrial. Apesar das vantagens, o PLA tem baixa tenacidade e reduzida elongação na ruptura a temperatura ambiente, o que torna a sua utilização limitada em usos que necessitem de alta deformação plástica em níveis de exigência mecânicos elevados. Misturas mecânicas de PLA com polímeros altamente flexíveis, como é o caso da poli(ε-caprolactona) (PCL), podem resultar em novos materiais com propriedades mecânicas adequadas para diferentes aplicações. Blendas PLA/PCL são completamente imiscíveis, sendo seu comportamento mecânico altamente dependente da interação interfacial entre os componentes da blenda. Portanto, o objetivo desse trabalho é avaliar o efeito compatibilizante de um copolímero em bloco de baixa massa molar (2000 g mol-1) derivado de ε-caprolactona e policarbonato (C2) e, disponível comercialmente em blendas imiscíveis PLA/PCL. Blendas binárias e ternárias foram preparadas por mistura mecânica no estado fundido via processo de extrusão em rosca simples. O teor de PLA nas blendas foi de 75, 50 e 25% (em massa) e a concentração do copolímero de 0, 1, 3, 5 e 7% (em massa). O comportamento térmico, morfológico e mecânico das blendas compatibilizadas e não compatibilizadas foi avaliado por Calorimetria Exploratória Diferencial (DSC), Análise Termodinâmico-Mecânica (DMTA), Microscopia Eletrônica de Varredura (MEV) e ensaios de tração, flexão e impacto Izod. Os resultados de DSC e DMTA indicaram que o copolímero provocou pequena redução na temperatura de transição vítrea (Tg) do PLA, sugerindo que o C2 é solúvel no PLA. Entretanto, nas micrografias das superfícies de fraturas do PLA foi nítida a presença de pequenas micelas formadas pelo copolímero em bloco, indicando que há um limite de solubilidade do compatibilizante na fase de PLA. Os resultados obtidos em tração mostraram que com o aumento do teor de compatibilizante, a tensão no escoamento, a tensão na ruptura e o módulo elástico das blendas sofrem alterações. A propriedade de tenacidade, avaliada no ensaio de impacto Izod, mostrou que as blendas tiveram um ganho na resistência quando comparadas com o PLA puro. Os resultados mostraram que o copolímero em bloco derivado de ε-caprolactona e policarbonato alifático pode atuar como compatibilizante para blendas PLA/PCL / Poly(lactic acid) (PLA) is a biodegradable, biocompatible and bioabsorbable polymer from renewable sources. It is an excellent sustainable alternative for replacing petroleum polymers, currently dominant in the industrial market. Despite the advantages, PLA has low toughness and reduced elongation at room temperature, which makes its use limited in uses that require high plastic deformation under high mechanical stress levels. Mechanical mixtures of PLA with highly flexible polymers, such as poly(ε-caprolactone) (PCL), may result in new materials with mechanical properties suitable for different applications. PLA/PCL blends are completely immiscible, and their mechanical behavior is highly dependent on the interfacial interaction between the components of the blend. Therefore, the objective of this work is to evaluate the compatibilizing effect of a low molar mass block copolymer (2000 g mol-1) derived from ε-caprolactone and polycarbonate (C2) and commercially available in PLA/PCL immiscible blends. Binary and ternary blends were prepared by mechanical mixing in the melted state via single-screw extrusion process. The content of PLA in the blends was 75, 50 and 25% (% by mass) and the copolymer concentration was 0, 1, 3, 5 and 7% (% by mass). The thermal, mechanical and morphological behavior of compatibilized and non-compatibilized blends was evaluated by differential scanning calorimetry (DSC), thermodynamic-mechanical analysis (DMTA), scanning electron microscopy (SEM), tensile test, flexion test, and Izod impact. The results of DSC and DMTA indicated that the copolymer caused a small reduction in the glass transition temperature (Tg) of PLA, suggesting that C2 is soluble in PLA. However, in the micrographies of the fracture surfaces of the PLA the presence of small micelles formed by the block copolymer is clear, indicating that there is a limit of solubility of the compatibilizer in the PLA phase. The results obtained in a tensile test showed that with the increase of the compatibilizing content, the tension in the flow, the tension at rupture and the elastic modulus of the blends undergo changes. The tenacity property, evaluated in the Izod impact test, showed that the blends had a gain in resistance when compared to pure PLA. The results showed that block copolymer derived from ε-caprolactone and aliphatic polycarbonate can act as a compatibilizer for PLA/PCL blends.
2

Fabricação de scaffolds de polímero reforçado para aplicação na bioengenharia tecidual / Manufacture of reinforced polymer scaffolds for application in tissue bioengineering

Barbosa, Talita Villa 10 December 2018 (has links)
No presente trabalho, suportes tridimensionais (scaffolds) de polímero reforçado foram gerados por meio da técnica aditiva por extrusão utilizando duas estratégias de deposição e, posteriormente, foram avaliados morfologicamente, mecanicamente e por meio de ensaios in vitro. Como matriz polimérica do compósito utilizou-se a poli(ε-caprolactona) e como reforço, o Biovidro® 45S5. De forma a melhorar a interação interfacial entre a matriz polimérica e a cerâmica, avaliou-se a incorporação de nanofibra de celulose ao biovidro. Os scaffolds foram fabricados seguindo dois métodos diferentes. O primeiro consistiu no pré-processamento do material em extrusora monorrosca, seguida de extrusão direta na impressora 3D experimental Fab@CTI. O segundo consistiu em um único processo de extrusão diretamente no cabeçote de extrusão. A caracterização química do biovidro por espectroscopia de fluorescência de raios-x mostrou eficiência na preparação da biocerâmica e a caracterização da distribuição do tamanho de partícula por espalhamento de luz dinâmica mostrou a obtenção de partículas submicrométricas. Os scaffolds foram caracterizados morfologicamente pela técnica de microscopia eletrônica de varredura, e, pôde-se notar a eficiência na fabricação de geometrias com arquitetura 00/900 e tamanho de poros adequado para a aplicação na engenharia tecidual. Os ensaios mecânicos de compressão evidenciaram melhoras na rigidez com o aumento do teor de biovidro, no caso dos materiais pré-processados por extrusão, além da influência da nanofibra de celulose na melhoria das propriedades mecânicas. Os ensaios biológicos in vitro mostraram que os scaffolds suportam proliferação celular e que o biovidro é responsável pela maior deposição de sais de cálcio extracelular, facilitando a interação do material sintetizado com o tecido ósseo. / In the present work, scaffolds of reinforced polymer were generated by means of the extrusion additive technique using two strategies of deposition and, later, were evaluated morphologically, mechanically and by means of in vitro tests. Poly (ε-caprolactone) was used as the polymer matrix of the composite and as a booster, Bioglass® 45S5. In order to improve the interfacial interaction between the polymer matrix and the ceramic, the incorporation of cellulose nanofiber to the bioglass was evaluated. The scaffolds were manufactured following two different methods. The first consisted of the pre-processing of the extruded extruder material followed by direct extrusion into the experimental Fab@CTI 3D printer. The second consisted of a single extrusion process directly on the extrusion head. The chemical characterization of the bioglass by x-ray fluorescence spectroscopy showed efficiency in the preparation of the bioceramics and the characterization of the particle size distribution by dynamic light scattering showed the submicrometric particles. The scaffolds were characterized morphologically by the scanning electron microscopy technique, and it was noted the efficiency in the manufacture of geometries with architecture 00/900 and pore size suitable for application in tissue engineering. The mechanical compression tests showed improvements in stiffness with increasing bioglass content in the case of pre-processed materials by extrusion, as well as the influence of cellulose nanofiber in improving mechanical properties. Biological assays have shown that scaffolds support cell proliferation and that bioglass is responsible for the increased deposition of extracellular calcium salts, facilitating the interaction of the synthesized material with the bone tissue.
3

Avaliação de comportamento térmico, morfológico e mecânico de blendas de PLA/PCL compatibilizadas por copolímero em bloco de baixa massa molar / Behavioral assessment of thermal behavior, morphological and mechanical behavior of biodegradeble blends PLA/PCL blends compatibilized by low molar mass block copolymer

Danielle Camargo Gimenes 21 August 2017 (has links)
O poli(ácido láctico) (PLA) é um polímero biodegradável, biocompatível e bioabsorvível proveniente de fontes renováveis. Constitui uma excelente alternativa sustentável para substituição dos polímeros provenientes de petróleo, atualmente dominantes no mercado industrial. Apesar das vantagens, o PLA tem baixa tenacidade e reduzida elongação na ruptura a temperatura ambiente, o que torna a sua utilização limitada em usos que necessitem de alta deformação plástica em níveis de exigência mecânicos elevados. Misturas mecânicas de PLA com polímeros altamente flexíveis, como é o caso da poli(ε-caprolactona) (PCL), podem resultar em novos materiais com propriedades mecânicas adequadas para diferentes aplicações. Blendas PLA/PCL são completamente imiscíveis, sendo seu comportamento mecânico altamente dependente da interação interfacial entre os componentes da blenda. Portanto, o objetivo desse trabalho é avaliar o efeito compatibilizante de um copolímero em bloco de baixa massa molar (2000 g mol-1) derivado de ε-caprolactona e policarbonato (C2) e, disponível comercialmente em blendas imiscíveis PLA/PCL. Blendas binárias e ternárias foram preparadas por mistura mecânica no estado fundido via processo de extrusão em rosca simples. O teor de PLA nas blendas foi de 75, 50 e 25% (em massa) e a concentração do copolímero de 0, 1, 3, 5 e 7% (em massa). O comportamento térmico, morfológico e mecânico das blendas compatibilizadas e não compatibilizadas foi avaliado por Calorimetria Exploratória Diferencial (DSC), Análise Termodinâmico-Mecânica (DMTA), Microscopia Eletrônica de Varredura (MEV) e ensaios de tração, flexão e impacto Izod. Os resultados de DSC e DMTA indicaram que o copolímero provocou pequena redução na temperatura de transição vítrea (Tg) do PLA, sugerindo que o C2 é solúvel no PLA. Entretanto, nas micrografias das superfícies de fraturas do PLA foi nítida a presença de pequenas micelas formadas pelo copolímero em bloco, indicando que há um limite de solubilidade do compatibilizante na fase de PLA. Os resultados obtidos em tração mostraram que com o aumento do teor de compatibilizante, a tensão no escoamento, a tensão na ruptura e o módulo elástico das blendas sofrem alterações. A propriedade de tenacidade, avaliada no ensaio de impacto Izod, mostrou que as blendas tiveram um ganho na resistência quando comparadas com o PLA puro. Os resultados mostraram que o copolímero em bloco derivado de ε-caprolactona e policarbonato alifático pode atuar como compatibilizante para blendas PLA/PCL / Poly(lactic acid) (PLA) is a biodegradable, biocompatible and bioabsorbable polymer from renewable sources. It is an excellent sustainable alternative for replacing petroleum polymers, currently dominant in the industrial market. Despite the advantages, PLA has low toughness and reduced elongation at room temperature, which makes its use limited in uses that require high plastic deformation under high mechanical stress levels. Mechanical mixtures of PLA with highly flexible polymers, such as poly(ε-caprolactone) (PCL), may result in new materials with mechanical properties suitable for different applications. PLA/PCL blends are completely immiscible, and their mechanical behavior is highly dependent on the interfacial interaction between the components of the blend. Therefore, the objective of this work is to evaluate the compatibilizing effect of a low molar mass block copolymer (2000 g mol-1) derived from ε-caprolactone and polycarbonate (C2) and commercially available in PLA/PCL immiscible blends. Binary and ternary blends were prepared by mechanical mixing in the melted state via single-screw extrusion process. The content of PLA in the blends was 75, 50 and 25% (% by mass) and the copolymer concentration was 0, 1, 3, 5 and 7% (% by mass). The thermal, mechanical and morphological behavior of compatibilized and non-compatibilized blends was evaluated by differential scanning calorimetry (DSC), thermodynamic-mechanical analysis (DMTA), scanning electron microscopy (SEM), tensile test, flexion test, and Izod impact. The results of DSC and DMTA indicated that the copolymer caused a small reduction in the glass transition temperature (Tg) of PLA, suggesting that C2 is soluble in PLA. However, in the micrographies of the fracture surfaces of the PLA the presence of small micelles formed by the block copolymer is clear, indicating that there is a limit of solubility of the compatibilizer in the PLA phase. The results obtained in a tensile test showed that with the increase of the compatibilizing content, the tension in the flow, the tension at rupture and the elastic modulus of the blends undergo changes. The tenacity property, evaluated in the Izod impact test, showed that the blends had a gain in resistance when compared to pure PLA. The results showed that block copolymer derived from ε-caprolactone and aliphatic polycarbonate can act as a compatibilizer for PLA/PCL blends.
4

Preparação de compósitos biodegradáveis de PCL reforçados com microfibrilas de PLA obtidas a partir do controle da morfologia de blendas imiscíveis PLA/PCL / Preparation of biodegradable PCL composites reinforced with PLA microfibrils obtained from the morphology of PLA/PCL immiscible blends control

Ferreira, Thaysa Rodrigues Mendes 29 October 2018 (has links)
O objetivo desse trabalho foi preparar compósitos de matriz de PCL reforçados com microfibrilas de PLA preparadas in situ a partir do controle da morfologia de blendas PLA/PCL. Embora a formação da morfologia fibrilar não tenha sido observada nas condições de extrusão empregadas, estudos do comportamento reológico de blendas de composição 50% PLA / 45% PCL / 5% de compatibilizante (% em massa) mostraram que microfibrilas de PLA podem ser obtidas entre 102 e 104 s-1. Assim, a técnica de reometria capilar foi utilizada para controlar a morfologia de blendas PLA/PCL. Compósitos de matriz de PCL reforçados com 5, 10, 20 e 30% (% em massa) de microfibrilas de PLA foram preparados em extrusora rosca simples, utilizando perfil de temperatura acima da temperatura de fusão do PCL, mas abaixo da temperatura de fusão do PLA, visando preservar a morfologia do PLA. O comportamento morfológico, térmico e mecânico dos compósitos foram avaliados por microscopia eletrônica de varredura (MEV), microscopia óptica com luz polarizada (POM), calorimetria exploratória diferencial (DSC), análise térmica dinâmico-mecânica (DMA) e ensaios mecânicos de tração e de impacto Izod. As curvas DSC mostraram um aumento no grau de cristalinidade da matriz de PCL com o aumento do teor de microfibrilas, o que provavelmente justifica os altos valores de módulo de Young determinados nos compósitos. A aplicação da Regra das Misturas comprovou que os compósitos fabricados exibiram boa orientação das microfibrilas na direção do esforço mecânico aplicado, com valores de módulos próximos ao limite superior da curva. No entanto, a adesão não uniforme entre a matriz e o reforço observada por MEV, resultou na queda da resistência à tração e resistência ao impacto dos compósitos, quando comparados ao PCL puro. A composição com 10% de microfibrilas apresentou um bom balanço de módulo de Young e resistência ao impacto, com potencial de viabilidade em uma série de aplicações biomédicas. / The aim of this work is to prepare PCL composites reinforced with PLA microfibrils prepared in situ from the morphology of PLA/PCL blends control. Although the formation of fibrillar morphology has not been observed under the extrusion conditions employed, studies of the rheological behavior of 50% PLA/ 45% PCL / 5% compatibilizer blends have shown that PLA microfibrils can be obtained between 102 and 104 s-1. Thus, the capillary rheometry technique was used to control the morphology of PLA /PCL blends. PCL composites reinforced with 5, 10, 20 and 30% (% by mass) PLA microfibrils were prepared in a single screw extruder using a temperature profile above the PCL melting temperature, but below the melt temperature of PLA, to preserve the PLA morphology. The morphology, thermal and mechanical behavior of the composites were evaluated by scanning electron microscopy (SEM), optical polarized light microscopy (POM), differential scanning calorimetry (DSC), dynamic mechanical-mechanical analysis (DMA) and mechanical tensile tests and Izod impact. DSC curves showed an increase in the degree of crystallinity of the PCL matrix with increasing the PLA microfibrils content, which probably justify the high Young\'s modulus values determined in the composites. The application of the Mix Rule proved that the composites showed good orientation of the PLA microfibrils in the direction of applied mechanical stress, presenting modules values near the upper limit of the curve. However, the non-uniform adhesion between the matrix and the reinforcement observed by MEV, caused the decrease of the tensile and impact strength when compared to pure PCL. The composition with 10% of PLA microfibrils exhibited a good balance of Young\'s modulus and impact strength, with potential viability in a number of biomedical applications.
5

Fabricação de scaffolds de polímero reforçado para aplicação na bioengenharia tecidual / Manufacture of reinforced polymer scaffolds for application in tissue bioengineering

Talita Villa Barbosa 10 December 2018 (has links)
No presente trabalho, suportes tridimensionais (scaffolds) de polímero reforçado foram gerados por meio da técnica aditiva por extrusão utilizando duas estratégias de deposição e, posteriormente, foram avaliados morfologicamente, mecanicamente e por meio de ensaios in vitro. Como matriz polimérica do compósito utilizou-se a poli(ε-caprolactona) e como reforço, o Biovidro® 45S5. De forma a melhorar a interação interfacial entre a matriz polimérica e a cerâmica, avaliou-se a incorporação de nanofibra de celulose ao biovidro. Os scaffolds foram fabricados seguindo dois métodos diferentes. O primeiro consistiu no pré-processamento do material em extrusora monorrosca, seguida de extrusão direta na impressora 3D experimental Fab@CTI. O segundo consistiu em um único processo de extrusão diretamente no cabeçote de extrusão. A caracterização química do biovidro por espectroscopia de fluorescência de raios-x mostrou eficiência na preparação da biocerâmica e a caracterização da distribuição do tamanho de partícula por espalhamento de luz dinâmica mostrou a obtenção de partículas submicrométricas. Os scaffolds foram caracterizados morfologicamente pela técnica de microscopia eletrônica de varredura, e, pôde-se notar a eficiência na fabricação de geometrias com arquitetura 00/900 e tamanho de poros adequado para a aplicação na engenharia tecidual. Os ensaios mecânicos de compressão evidenciaram melhoras na rigidez com o aumento do teor de biovidro, no caso dos materiais pré-processados por extrusão, além da influência da nanofibra de celulose na melhoria das propriedades mecânicas. Os ensaios biológicos in vitro mostraram que os scaffolds suportam proliferação celular e que o biovidro é responsável pela maior deposição de sais de cálcio extracelular, facilitando a interação do material sintetizado com o tecido ósseo. / In the present work, scaffolds of reinforced polymer were generated by means of the extrusion additive technique using two strategies of deposition and, later, were evaluated morphologically, mechanically and by means of in vitro tests. Poly (ε-caprolactone) was used as the polymer matrix of the composite and as a booster, Bioglass® 45S5. In order to improve the interfacial interaction between the polymer matrix and the ceramic, the incorporation of cellulose nanofiber to the bioglass was evaluated. The scaffolds were manufactured following two different methods. The first consisted of the pre-processing of the extruded extruder material followed by direct extrusion into the experimental Fab@CTI 3D printer. The second consisted of a single extrusion process directly on the extrusion head. The chemical characterization of the bioglass by x-ray fluorescence spectroscopy showed efficiency in the preparation of the bioceramics and the characterization of the particle size distribution by dynamic light scattering showed the submicrometric particles. The scaffolds were characterized morphologically by the scanning electron microscopy technique, and it was noted the efficiency in the manufacture of geometries with architecture 00/900 and pore size suitable for application in tissue engineering. The mechanical compression tests showed improvements in stiffness with increasing bioglass content in the case of pre-processed materials by extrusion, as well as the influence of cellulose nanofiber in improving mechanical properties. Biological assays have shown that scaffolds support cell proliferation and that bioglass is responsible for the increased deposition of extracellular calcium salts, facilitating the interaction of the synthesized material with the bone tissue.

Page generated in 0.0537 seconds