Spelling suggestions: "subject:"polinômios centrais como convolução"" "subject:"polinômios centrais como evolução""
1 |
Polinômios centrais para álgebras T-primas. / Central polynomials for algebras T-prime materials.FREITAS, Sabrina Alves de. 24 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-24T16:42:24Z
No. of bitstreams: 1
SABRINA ALVES DE FREITAS - DISSERTAÇÃO PPGMAT 2010..pdf: 457483 bytes, checksum: d828740083c1ccca9a0a0f8b45be01d0 (MD5) / Made available in DSpace on 2018-07-24T16:42:24Z (GMT). No. of bitstreams: 1
SABRINA ALVES DE FREITAS - DISSERTAÇÃO PPGMAT 2010..pdf: 457483 bytes, checksum: d828740083c1ccca9a0a0f8b45be01d0 (MD5)
Previous issue date: 2010-04 / Capes / Neste trabalho apresentaremos um estudo sobre polinômios centrais ordinários,
Z2-graduados e com involução para algumas importantes álgebras na PI-teoria sobre corpos infinitos. Mais precisamente, descreveremos os polinômios centrais Z2-graduados para as álgebras M2(K) (matrizes 2 × 2 sobre um corpo K), M1,1(E) (subálgebra de M2(E)
que consite das matrizes cujas entradas da diagonal principal estão
em E0 e os da diagonal secundária estão em E1,onde E é a álgebra de Grassmann com
unidade de dimensão infinita e E0 e E1 suas componentes homogêneas de graus 0 e 1,
respectivamente) e E ⊗ E. Além disso descreveremos os polinômios centrais para E
sobre um corpo infinito K de característica diferente de 2 e finalmente os polinômios
centrais com involução para M2(K), considerando as involuções transposta e simplética. / In this work we study ordinary, Z2-graded central polinomials and central polinomials with involution for some important algebras in the theory of algebras with
polinomial identities, over infinite fields.Namely, we decribe Z2-graded central polinomials for the algebras M2(K) (2 × 2 matrices over a field K), M1,1(E) (subalgebra of M2(E) whose entries on the diagonal belong to E0 and the off-diagonal entries lie in E1, E is the infinite-dimensional unitary Grassmann algebra, E0 is the center of E and E1 is the anticommutative part of E) and E ⊗ E. Also, we describe the central polinomials for e over a field K, with charK ≠ 2 and finally the central polinomial with involution for M2 (K), considering the transpose and the sympletic involutions.
|
2 |
Identidades polinomiais e polinômios centrais com involução. / Polynomial identities and involutional central polynomials.BEZERRA JÚNIOR, Claudemir Fidelis. 09 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-09T16:56:07Z
No. of bitstreams: 1
CLAUDEMIR FIDELIS BEZERRA JÚNIOR - DISSERTAÇÃO PPGMAT 2014..pdf: 825308 bytes, checksum: d7bd377c69f618ba4b331c4575210512 (MD5) / Made available in DSpace on 2018-08-09T16:56:07Z (GMT). No. of bitstreams: 1
CLAUDEMIR FIDELIS BEZERRA JÚNIOR - DISSERTAÇÃO PPGMAT 2014..pdf: 825308 bytes, checksum: d7bd377c69f618ba4b331c4575210512 (MD5)
Previous issue date: 2014-02 / Capes / Nesta dissertação são descritas bases para as identidades polinomiais e os polinômios
centrais com involução para a álgebra das matrizes 2 × 2 sobre um corpo in nito
K de característica p 6= 2, considerando-se a involução transposta, denotada por t, e
também a involução simplética, denotada por s. É conhecido que, como o corpo K é
in nito, se ∗ é uma involução em M2(K), então o ideal de identidades (M2(K), ∗) coincide
com (M2(K), t) ou com (M2(K), s). Consideramos também as álgebras Mn(E),
Mk,l(E) e M1,1(E) sobre corpos de característica 0. Para as álgebras Mn(E) e Mk,l(E),
provamos que para uma classe ampla de involuções as identidades polinomiais com
involução coincidem com as identidades ordinárias, e para a álgebra M1,1(E) com a involução ∗ induzida pela superinvolução transposta na superálgebra M1,1(K), exibimos
uma base nita para as ∗-identidades polinomiais. / In this dissertation we describe basis for the polynomial identities and central
polynomials with involution for the algebra of 2 × 2 matrices over an infinite field K
of characteristic p 6= 2 considering the transpose involution, denoted by t, and also
the symplectic involution, denoted by s. It is known that, since the field K is infinite,
if ∗ is an involution on M2(K), then the ideal of identities (M2(K), ∗) coincides with
(M2(K), t) or with (M2(K), s). We also consider the algebras Mn(E), Mk,l(E) and
M1,1(E) over fields of characteristic 0. For the algebras Mn(E) and Mk,l(E) we prove
that for a large class of involutions the polynomial identities with involution coincide
with the ordinary identities, and for the algebra M1,1(E) with the involution ∗ induced
by the transposition superinvolution of the superalgebra M1,1(K) we exhibit nite basis
for the ∗-polynomial identities.
|
Page generated in 0.0951 seconds