• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 7
  • 4
  • 1
  • Tagged with
  • 22
  • 22
  • 11
  • 9
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical Simulation of Pollutant Emission and Flame Extinction in Lean Premixed Systems

Eggenspieler, Gilles 13 July 2005 (has links)
Premixed and partially-premixed combustion and ollutant emissions in full-scale gas turbines has been numerically investigated using a massively-parallel Large-Eddy Simulation Combustion Dynamics Model. Through the use of a flamelet library approach, it was observed that CO (Carbon Oxide) and NO (Nitric Oxide) emission can be predicted and match experimental results. The prediction of the CO emission trend is shown to be possible if the influence of the formation of UHC (Unburnt HydroCarbons) via flame extinction is taken into account. Simulations were repeated with two different combustion approach: the G-equation model and the Linear-Eddy Mixing (LEM) Model. Results are similar for these two sets of numerical simulations. The LEM model was used to simulate flame extinction and flame lift-off in a dump combustion chamber. The LEM model is compared to the G-equation model and it was found that the LEM model is more versatile than the G-equation model with regard to accurate simulation of flame propagation in all turbulent premixed combustion regimes. With the addition of heat losses, flame extinction was observed for low equivalence ratio. Numerical simulation of flame propagation with transient inflow conditions were also carried out and demonstrated the ability of the LEM model to accurately simulate flame propagation in the case of a partially-premixed system. In all simulations where flame extinction and flame lift-off was simulated, release of unburnt fuel in the post-flame region through flame extinction was not observed.
2

Modelling of tilt rotor mission performance to assess environmental impact

Ruge Montilla, Jhonn Hamberth 01 1900 (has links)
New technologies and new rotorcraft operations are being developed in order to meet new environmental requirements such as noise reduction and less pollutant emissions. In this project a parametric study was developed over a tilt rotor model in order to assess the environmental impact in terms of operational parameter and fuel burned looking at pollutant emission released into the air such as NOx, CO, UHC, PM, CO2 & H2O In order to perform the study previously stated, a computational tool build on Simulink titled tilt rotor mission performance was developed to run a single mission profile as a base line making different operational variations on every mission segment looking at deviations over fuel burned and pollutant emissions. The contribution of pollutant emissions during the cruise segment was compared to other phases obtaining 80% of CO2 and H2O, 75% of CO and UHC, 77% of NOx, and 78% of PM. Also, comparing the distance flown of the tilt rotor with some turboprop aircraft, it was found that the fuel burned and levels of CO2 are higher using tilt rotor rather than turboprop aircraft. On the other hand this is much better than helicopters.
3

INFLUENCE OF THE MIXTURE PREPARATION ON THE COMBUSTION IN DIRECT INJECTION ENGINES

GASTALDI, PATRICK 31 March 2015 (has links)
During the last two centuries, the development of the internal combustion engine has followed the evolution of the customer expectations. From the race for pure performances, high power, and fun to drive, perfectly well illustrated by the fabulous Mercedes 300 SL, the focus moved towards fuel efficient engines under the pressure of the still increasing oil prices. The well-known Diesel powertrain, up to this period limited to industrial vehicles, suddenly became the object of many researches, even for automotive manufacturers, specialists for sport cars. Technologic developments, mainly concerning turbocharging and injection, allowed the opening of the passenger cars market to CI engines due to acceptable noise, power and still unreachable efficiency. On the gasoline side, direct injection moved from racing to economic cars by the introduction of the stratified combustion. More recently, the pressure rose for dramatically reducing the air pollution, both in urban areas, by limiting NOx and soot, but also, at the scale of the earth, for managing CO2 rejections and thereby enlarging the efforts on efficiency. The two first combustion systems described in this document are concerning spray guided and air guided design alternatives to obtain a fuel stratification, and thereby operate the gasoline engine without throttling the air intake, aiming at a better fuel efficiency. The first concept, called MID3S, was based on a 3 valve combustion chamber with a large squish area and a high compression ratio over 12; inspired from the May Fireball system, it was developed with a house made high pressure injector operating up to 80 bars with an outwardly opening needle. An ultra-lean flame-able mixture was formed at WOT in the vicinity of the spark plug for different operating points as low as idle, while the maximum performances were quite close to the targeted 37 kW/l. The efficiency was significantly improved compared to a similar MPI engine while CO and HC were quite acceptable. On the contrary, NOx and soot would have to be improved. The robustness of the squish aerodynamic motion was unfortunately balanced by the sensitivity of spray angle and penetration versus the back pressure and thereby late injection timings, creating plug wetting and fouling. The hollow cone structure of the fuel plume was clearly responsible of this behavior, especially because of the effect of the air entrainment inside the spray. An increase of the injection pressure from 30 to 80 bar, and probably upper, would probably reduce this effect. Concerning methodologies, a dedicated cylinder head was designed with two endoscope locations in order to visualize the interaction between spray, air, walls and combustion –or more precisely soot- with a high speed camera operating within visible wavelengths. The spray structure, formed by a succession of ligaments at the surface of the plume, was clearly emphasized in atmospheric conditions. The second design, called K5M, was based on an adjustable high tumble motion generated in the intake port. A swirl injector provided by Siemens and located between the two intake valves of the pent roof chamber, was operated until 80 bar. Mixture preparation was relying on the interaction between the air motion and the spray, the tumble velocity deviating fuel droplets towards the spark plug situated at the center of the chamber. 3D CFD simulation, PIV and LIF visualization techniques on an optical single cylinder engine were used in parallel in order to understand the spatial evolution of the equivalence ratio during the cycle and the ability to operate the engine at WOT, even at part load. At low BMEP and speed, the natural reduction of the tumble intensity might have been followed by a significant reduction of the injection pressure in order to secure an accurate balance between the two momentum energies; unfortunately, both high cycle to cycle aerodynamic fluctuations and a poor spray atomization at 30 bar didn’t allow to achieve an acceptable ignition stability at low loads due to a too lean mixture in the plug vicinity. Protruded electrodes could have been a solution to the problem but their reliable use in serial life was not secured. On the contrary, mid load performances were globally adequate. The third concept is concerning Diesel combustion aiming at very low NOx and soot emissions by using an innovative injection system. The basic idea relies on the use of a quite homogeneous combustion at low load –called Mild HCCI- and on a diffusion controlled one at higher loads. Based on two injections close one of the other in the vicinity of TDC, the Mild HCCI allows to moderate the combustion noise inherent to the premixed burning phase as the fuel injected during the second injection cools down the first combustion; the advantages of very low NOx and soot emissions until around 8 bar BMEP are meanwhile maintained. Above this value, the noise level becomes unacceptable for automotive applications and the come back to a conventional diffusive combustion becomes mandatory. Based on early academic investigations pointing out the positive effect of small nozzle holes associated to high injection pressures in terms of soot via a significant difference between the lift-off length and the liquid penetration length, an innovative injection system was adapted to a conventional combustion chamber. The first conclusion was concerning a significant improvement of the NOx/soot tradeoff at mid and high loads with quite usual EGR rates. This advantage was due to a much better fuel atomization linked to both small holes and high pressures. The second conclusion was related to the possibility to achieve a “0 soot/ 0 NOx” combustion at high loads while very much increasing EGR and air mass flows. In this case, a Lifted Flame Diffusion Controlled combustion was generated, confirming on a scale 1 engine the results obtained in academic conditions. Nevertheless, the use of 3D simulation allowed to demonstrate that mixture preparation was only one part of the result; the location of the different stages of the combustion in a Kamimoto diagram, much away from the NOx and soot peninsula, highlighted the impact of the LTC (Low Temperature Combustion) thermodynamics. Unfortunately, despite these good results, industrially available EGR and air systems are not able to provide the necessary mass flows. Concerning tools, the development steps were followed by intensive spray visualizations for both the liquid and the vapor phases, in conditions closer and closer to the actual engine. These measurements allowed to precisely evaluate the impact of the diameter size, the rail pressure and the oxygen content on the difference between lift-off and liquid lengths. Finally, the importance of coupling investigation tools like visualization and 3D simulation in conditions as close as possible to the actual engine in terms of temperature, pressure and timing –eg the ability to record a complete mixture and combustion cycle- has been emphasized for both future SI and Diesel engines. In particular, the forecasted increase of the rail pressures will lead to re-optimize the different available spray models and eventually to re-adapt them in terms of physical phenomena because of the great variations of the spray velocity and of the Weber number. The presence of cavitation in the nozzle holes will also have to be taken into account as it has a key role versus coking. In conclusion, it is quite clear that the development of stratified gasoline and low emissions Diesel engines will more and more rely on the mixture preparation and on its association with low gas temperatures. / Gastaldi, P. (2015). INFLUENCE OF THE MIXTURE PREPARATION ON THE COMBUSTION IN DIRECT INJECTION ENGINES [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48534 / TESIS
4

Modélisation de la formation des polluants au sein des foyers aéronautiques par une méthode de chimie tabulée / Modelling of pollutant species formation in aeronautical combustors using a tabulated chemistry method

Boucher, Aymeric 14 January 2015 (has links)
La réduction des émissions polluantes des foyers aéronautiques est un enjeu majeur pour les motoristes. Afin de les accompagner dans cette tâche, il est nécessaire de développer des outils de simulation numérique permettant de prédire avec précision les émissions d'espèces chimiques en sortie du foyer. Pour cela, une description détaillée des réactions chimiques est nécessaire. Celle-ci est néanmoins incompatible avec la simulation des foyers industriels, compte tenu des puissances de calcul actuelles. C'est pourquoi il est nécessaire de recourir à des méthodes de réduction de la chimie qui préservent la capacité de prédire la concentration des polluants. La démarche consistant à tabuler la chimie nous a semblé appropriée pour aborder ces problèmes et son développement a fait l'objet de cette thèse. Un premier travail a été effectué afin de sélectionner dans la littérature les modèles permettant de traiter des écoulements réactifs turbulents diphasiques avec une approche de chimie tabulée. Par rapport à l’existant, des améliorations ont été apportées à la génération des tables chimiques, afin de prendre en compte l'effet du temps de résidence des gaz brûlés dans le foyer sur la formation des oxydes d'azote. Le couplage de la méthode avec un modèle de formation des suies a également été réalisé. La chimie tabulée permet d’avoir accès à la concentration des précurseurs de suie et des espèces oxydantes, quantités sur lesquelles s’appuie le modèle de formation des suies. Le modèle de chimie tabulée développé dans le cadre de cette thèse a été appliqué à la simulation d'une configuration représentative des foyers aéronautiques. Les concentrations d'oxydes d'azote, de particules de suie, mais aussi de monoxyde de carbone et d'hydrocarbures imbrûlés prédites par les calculs ont été comparées aux résultats expérimentaux. Un bon accord avec l'expérience est observé concernant la topologie du champ de suie et l'allure des profils de concentration de polluants en sortie. Néanmoins, les niveaux de concentration obtenus par les simulations diffèrent des résultats expérimentaux. Cela est imputable notamment à une erreur de prédiction du champ de température qui n'est pas due à l'approche de chimie-tabulée puisque une erreur similaire a été observée avec un autre modèle de combustion. / The reduction of pollutant emissions of aeronautical combustion chambers is a major issue for engine manufacturers. In order to support them in this task, it is necessary to develop numerical simulation tools able to predict accurately chemical species emissions at the chamber outlet. To achieve this, a detailed description of the chemical reactions is necessary. Nevertheless, considering the current computer capabilities, this description is not presently affordable. This is why the use of chemistry reduction methods preserving the capability to predict pollutants species is necessary. The method of tabulated chemistry is a good candidate to tackle these problems and therefore is used as the basis of model developments achieved in the framework of this PhD thesis. A preliminary work has been made to select in the literature tabulated chemistry methods applying to turbulent reactive two-phase flows. The technique to create the chemical tables has been improved in order to take into account the effect of the residence time of the burnt gases on nitrogen oxides formation. The coupling of the method with a soot model has also been achieved. The tabulated chemistry gives access to the concentration of soot precursors and oxidizers, quantities which are required by the model used for the soot prediction. The developed tabulated chemistry model has been applied to the simulation of a configuration representative of aeronautical combustors. The concentration of nitrogen oxides, soot particles, carbon monoxide and unburnt hydrocarbons predicted by the numerical simulations have been compared to experimental results. The topology of the soot volume fraction field and the shape of pollutant concentrations profiles at the outlet agree quite well with the experiments. Nevertheless, concentration levels obtained from the simulations differ from the experimental results. This can be imputed to the error in the prediction of the temperature field that is independent of the combustion model, since a similar error was observed with another combustion model.
5

Monetarização de gases poluentes de veículos do ciclo Otto no Brasil de 2000 a 2009

Gonçalves, Thais Souza 14 April 2015 (has links)
O agravamento de inúmeros problemas ambientais nas últimas décadas – contaminação do ar e da água, epidemias, secas prolongadas, enchentes, incêndios florestais, perdas da qualidade do solo, desastres nucleares e químicos, o crescimento do buraco na camada de ozônio e a atual escassez de água – têm emitido alertas a gestores e sociedade sobre a devida responsabilidade acerca dos recursos naturais. Nesse sentido, a valoração ou monetarização da emissão dos principais poluentes veiculares é fundamental para a formulação de políticas públicas ambientais, de gestão de transporte e trânsito que busquem resultados mais efetivos no controle das emissões. Esse trabalho apresenta uma breve discussão sobre as emissões veiculares de poluentes e as principais políticas públicas adotadas no setor e das emissões evitadas pelo uso do álcool carburante. Apresentou uma metodologia de cálculo baseada no quantitativo da frota de veículos, da intensidade de uso, dos fatores de emissão e dos valores monetários de referência de monóxido de carbono, óxido de nitrogênio, hidrocarbonetos e material particulado. Como resultado, apresenta-se as análises com seus respectivos valores das emissões referentes ao quantitativo monetário dos gases selecionados. Com o aumento do carro com tecnologia flex-fuel, observou-se a redução das emissões totais dos gases poluentes, embora a frota tenha aumentado em valores absolutos. Os valores monetários calculados por meio dos Indicadores de Monetarização de Emissões demonstraram que o monóxido de carbono é o principal responsável das emissões por automóveis que utilizam o ciclo Otto no Brasil, representando 45,7% das emissões e o valor monetário foi de R$ 4.736.386.753,28. Os hidrocarbonetos são o segundo gás mais emitido pela frota de automóveis, sendo responsável por 27,3% das emissões, e valor monetário de R$ 2.835.304.578,20. Em seguida surgem as emissões de óxido de nitrogênio, que em teve suas emissões reduzidas em 26,8% e foi responsável por R$ 2.785.548.815,02. Já as emissões de material particulado, em 2000 foram de R$ 705.307,57. Com a redução de 23%, foram responsáveis por R$ 545.752,13. Pode-se verificar, também, que o custo ambiental do período de 2000 a 2009, provocado pela frota de automóveis do ciclo Otto, dedicados ou de tecnologia flex-fuel, movidos à gasolina C e etanol hidratado, foi de R$ 10.363.277.869,40. / The worsening of numerous environmental problems in recent decades - contamination of air and water, epidemics, prolonged droughts, floods, forest fires, loss of soil quality, nuclear and chemical disasters, the hole growth in the ozone layer and the current shortage water - have issued alerts to managers and society on the proper responsibility about natural resources. In this sense, the valuation or monetization of emission of key vehicle pollutants is essential for the formulation of environmental policies, transportation management and traffic that seek more effective results in controlling emissions. This paper presents a brief discussion on vehicle emissions of pollutants and major public policies adopted in the industry and emissions avoided by the use of fuel ethanol. Presented a calculation method based on the amount of the vehicle fleet, the intensity of use, emission and monetary values of carbon monoxide reference factors, nitrogen oxides, hydrocarbons and particulate matter. As a result, the analysis is presented with the respective emission values for the quantitative currency of selected gases. With increasing car with flex-fuel technology, there was a reduction of total emissions of greenhouse gases, although the fleet has increased in absolute terms. The monetary values calculated using the emissions of monetization indicators showed that carbon monoxide is primarily responsible for emissions from motor vehicles the Otto cycle in Brazil, representing 45.7% of the emissions and the monetary value was R $ 4,736 .386.753,28. Hydrocarbons are the second most gas emitted by the car fleet, accounting for 27.3% of emissions, and monetary value of R $ 2,835,304,578.20. Then come the emissions of nitrogen oxide, which had its emission reductions of 26.8% and accounted for R $ 2,785,548,815.02. While emissions of particulate matter in 2000 were R $ 705,307.57. With the reduction of 23%, accounted for R $ 545,752.13. You can also check that the environmental cost for the period 2000-2009, caused by the fleet of vehicles of the Otto cycle, dedicated or flex-fuel technology, moved to C gasoline and hydrous ethanol was R $ 10,363,277,869 40.
6

Exploring the limits of hydrogen assisted jet ignition

Hamori, Ferenc Unknown Date (has links) (PDF)
Homogeneously charged spark ignition (SI) engines are unable to stabilise the combustion in ultra lean mixtures, therefore they operate with a near stoichiometric air-fuel ratio (AFR) at all load points. This produces high engine out NOx and CO emissions with a compromise on fuel consumption. Moreover, stoichiometric operation is needed for effective operation of a three way catalyst, which is not adequate to meet future fuel consumption targets. (For complete abstract open document)
7

Neural network modelling and control of coal fired boiler plant

Thai, Shee Meng January 2005 (has links)
This thesis presents the development of a Neural Network Based Controller (NNBC) for chain grate stoker fired boilers. The objective of the controller was to increase combustion efficiency and maintain pollutant emissions below future medium term stringent legislation. Artificial Neural Networks (ANNs) were used to estimate future emissions from and control the combustion process. Initial tests at Casella CRE Ltd demonstrated the ability of ANNs to characterise the complex functional relationships which subsisted in the data set, and utilised previously gained knowledge to deliver predictions up to three minutes into the future. This technique was then built into a carefully designed control strategy that fundamentally mimicked the actions of an expert boiler operator, to control an industrial chain grate stoker at HM Prison Garth, Lancashire. Test results demonstrated that the developed novel NNBC was able to control the industrial stoker boiler plant to deliver the load demand whilst keeping the excess air level to a minimum. As a result the NNBC also managed to maintain the pollutant emissions within probable future limits for this size of boiler. This prototype controller would thus offer the industrial coal user with a means to improve the combustion efficiency on chain grate stokers as well as meeting medium term legislation limits on pollutant emissions that could be imposed by the European Commission.
8

Sustainable flue-gas quench : For waste incineration plants within a water-energy-environment nexus perspective

Al Hamrani, Emad, Grönberg, Nils January 2017 (has links)
The function of a flue-gas quench is to remove additional contaminants from flue-gas and to reduce the wastewater from a waste incineration plant. The aim of this degree project is to find how the system is affected by using a quench and what factors limits the performance. This is done by modelling and simulating a waste incineration plant in Aspen Plus. Data and plant schematics were obtained by a study visit to Mälarenergi Plant 6 situated in Västerås, Sweden, which were used as model input and for model validation. The results have shown that the amount of wastewater can be reduced by more than half compared to a plant without a quench. The heat produced in the condenser, when discharging water to the boiler, would be lowered by up to 20%. For systems with a quench present when more water was discharged to the boiler both the heat production and the pollutant capturing became better. However, the system has limits regarding the amount that could be recirculated, in the form of temperature limits in different parts of the system. In addition, if the heat load is low there is an insufficient amount of wastewater generated in the condenser to run the quench. In that situation, clean (fresh) water needs to be used instead. Using clean water is unwanted since the plant will then consume more resources while still producing less heat than a plant without a quench would.
9

Caractérisation multi-physique et multi-échelle d'une installation de conversion d'énergie : application à une unité de cogénération biomasse / Multi-physical and multi-scale characterization of an energy conversion installation : application to a biomass cogeneration unit

Mameri, Fateh 14 December 2018 (has links)
La micro-cogénération désigne la production simultanée de deux énergies finales et utilisables à partir d’une seule source d’énergie primaire. Le cas le plus fréquent est la production de la chaleur et de l’électricité. En France, la micro-cogénération concerne les petites puissances (< 36 kWel). Son intérêt réside dans des rendements globaux supérieurs à ceux obtenus dans le cas d’une production séparée équivalente d’électricité et de chaleur. Dans le cas d’une micro-cogénération biomasse, la chaleur est fournie par une chaudière biomasse qui est couplée à un cogénérateur via un échangeur de chaleur gaz – gaz. À cette échelle de puissance, les moteurs à combustion externe ou moteurs à air chaud sont les plus indiqués comme cogénérateur. L’objet de cette thèse est de caractériser et de modéliser une unité de micro-cogénération biomasse qui se compose d’une chaudière domestique à pellets de puissance 30 kWth, d’un moteur à air chaud de type Ericsson et d’un échangeur air–gaz brûlés inséré dans la chambre de combustion de la chaudière. Des modèles dynamiques 0D de la chaudière biomasse et de l’échangeur de chaleur air – gaz brûlés sont développés pour simuler les phases transitoires et représenter l’évolution des variables du système au cours du temps. Les modèles 0D dynamiques ont été validés par des mesures expérimentales. Ils sont capables d'évaluer les performances énergétiques et les pertes de puissance et de quantifier les transferts thermiques entre les fluides de travail (eau et air), les gaz brûlés et les parois en différentes zones au sein du système considéré (chaudière ou échangeur de chaleur air – gaz brûlés). Une post-combustion a été réalisée en injectant de l’air secondaire à différents débits, chauffé à différentes températures dans la partie haute de la chambre de combustion de la chaudière. Des mesures des émissions polluantes au niveau de la cheminée de la chaudière ont été réalisées afin d’examiner l’influence de la post-combustion. Les principaux composants mesurés sont : le dioxyde de carbone, l’oxygène, le monoxyde de carbone et les oxydes d’azote. / Micro-cogeneration refers to the simultaneous production of two final and usable energies from a single primary energy source. The most common case is the production of heat and electricity. In France, micro-cogeneration concerns small powers (< 36 kWel). Its interest lies in higher efficiencies than those obtained in the case of an equivalent separate production of electricity and heat. In the case of biomass micro-CHP system, the heat is supplied by a biomass boiler that is coupled to a cogenerator via a heat exchanger. For this power, external combustion engines or hot air engines are the most suitable. In the case of The purpose of this PhD thesis work is to characterize and model a biomass micro-CHP unit, with a biomass boiler (30 kWth), an Ericsson engine and an air-flue gas heat exchanger inserted inside the combustion chamber of the boiler. Dynamic models 0D of the biomass boiler and the air-flue gas heat exchanger are developed to simulate the transient phases and to represent the evolution of the variables as a time function. Dynamic 0D models have been validated by experimental measurements. They evaluate the energy performances and power losses and quantify heat transfer between working fluids (water and air), flue gases and walls in different zones in the considered system (boiler or air-flue gas heat exchanger). A post-combustion is investigated by injecting secondary air at different flow rates and different temperatures in the upper part of the boiler combustion chamber. Experimental measurements of pollutant emissions in the boiler chimney are performed to examine the post-combustion influence. The main pollutants measured are: carbon dioxide, oxygen, carbon monoxide and nitrogen oxides.
10

Estudo do comportamento de misturas asfálticas mornas em revestimentos de pavimento com adição de borracha moída de pneu. / Study of behavior of rubberized warm mix asphalt.

Merighi, Cecilia Fortes 02 March 2015 (has links)
Este trabalho apresenta um estudo realizado com uma mistura asfáltica morna utilizando ligante aditivado com agente surfactante e borracha moída de pneus inservíveis. Um trecho experimental foi executado com a mistura asfáltica morna, localizado na SPA-248-055, Pista Oeste, entre os quilômetros 3+000 e 6+000 e comparado ao trecho de referência, localizado na mesma rodovia, entre os quilômetros 1+000 e 3+000. Foram feitos também ensaios fundamentais para caracterização do ligante modificado com borracha e com aditivo químico para mistura morna e também ensaios para verificar o comportamento mecânico da mistura de usina, de modo que possibilitou comparar seus resultados com uma mistura de referência, com produção na temperatura a quente. Os ensaios realizados para verificação do comportamento mecânico foram: resistência à tração, módulo de resiliência, fadiga e resistência à formação de trilha de roda no simulador de tráfego francês do LCPC. Comparando a mistura asfáltica morna com uma mistura de referencia, os resultados obtidos foram satisfatórios. Além destes experimentos também foram realizados ensaios de resistência ao dano por umidade induzida (DUI). No caso deste estudo, os resultados foram satisfatórios. Durante a produção da mistura asfáltica, foi realizada a análise da redução de emissões de poluentes, no momento da produção da mistura. Os resultados indicaram que há redução de poluentes como fumos totais, fumos solúveis e compostos orgânicos voláteis (VOC). Tanto o trecho experimental quanto o trecho de referência foram avaliados durante 3 anos quanto aos parâmetros de desempenho do pavimento, como irregularidade e condição de superfície. Os resultados obtidos mostram o comportamento positivo da mistura asfáltica morna, quando comparado ao pavimento do trecho de referência, ao longo de dois anos de observação. / This paper presents a study of a warm asphalt mix using binder additive with surfactant agent and tire crumb rubber. A test section was performed with the warm asphalt mixture, located in SPA-248-055, West Lane, between kilometers 3+00 to 6+000 and compared to the reference section, a hot mix section, located on the same highway, between kilometers 1 + 000 and 3 + 000. Basic tests were also made to characterize the rubber-modified binder and to verify the mechanical behavior of the plant mixture, than compared to results of a reference hot mixture. The tests performed to check the mechanical behavior were: tensile strength, resilient modulus, fatigue and rooting in French LCPC traffic simulator. Comparing the warm asphalt mixture with a mixture of reference, the results achieved were satisfactory. In addiction, in this research were also performed induced moisture damage, and check the adhesion of the binder to the aggregate. In the case of this study, the results were acceptable. During warm asphalt mix and hot mix production, analysis of reducing pollutant emissions were recorded. The results indicated that there is a reduction of pollutants such as total smoke, fumes soluble and organic volatile compounds. Both the experimental section and the reference section were evaluated for 3 years for pavement performance parameters such as roughness and surface condition. The results show a positive behavior of warm asphalt mix compared to the reference pavement section over two years of observation.

Page generated in 0.0954 seconds