• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 32
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • Tagged with
  • 93
  • 93
  • 67
  • 20
  • 18
  • 17
  • 14
  • 11
  • 11
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Development and testing of a fluorometric method and instrument based on the 2',7' dichlorodihydrofluorescin assay for the measurement of reactive oxygen species

King, Laura Emily 14 November 2012 (has links)
An online, semi-continuous instrument to measure both total and gas phase atmospheric reactive oxygen species (ROS) and determine the concentration of ROS in the particle phase (ROS(p)) was developed. This instrument was based on a fluorescent probe for quantifying ambient ROS, specifically 2'7'-dichlorodihydrofluorescin, or DCFH probe. This probe was analyzed for sensitivity to a variety of offline and online parameters for efficient use in a field instrument. The ROS(p) instrument measures the peak light intensity at 530 nm to determine ambient ROS concentrations. ROS particles and gases are collected in a mist chamber in a nebulized mist. The instrument alternates measurements of ROS(p+g), or ROS(tot) by means of an inline filter. Fine (PM₂.₅) (ROS(p) is determined by subtraction of the ROS(g) concentration from the ROS(tot), as the ROS(g) signal could not be excluded. This instrument was tested during the summer (May-July) of 2012 at urban and rural sites in the metropolitan Atlanta and surrounding region. Concentrations of ROS(p) determined from this instrument were often below limit of detection. Average concentrations of ROS(p) were found to be 0.25 nmol/m³ in urban Atlanta (Jefferson St. and Georgia Tech), and 0.15 nmol/m³ in Yorkville, a rural site. A side by side comparison of this method with a filter collection method was made in July. The average ROS(p) offline concentrations were 0.15 nmol/m³. These concentrations were comparable to the online average concentrations of 0.21 nmol/m³ for the same period of time. This average and the majority of the measurements comprising it is dominated by the high limit of detection. The ROS instrument as constructed and operated is an efficient way to conduct ROS(p) measurements at the level of a filter study while reducing the labor intensive filter collection and extraction. In order for this instrument to be successful at measuring ambient ROS in the particle phase, the removal of the gas phase from the current sampling scheme is critical as the ROS(g) concentrations are over 90% of the measured ROS. The system as currently operable is best suited for source measurements, including biomass burning plumes or fresh exhaust to capture immediate formation.
82

A high resolution model for multiple source dispersion of air pollutants under complex atmospheric structure.

Burger, Lucian Willem. January 1986 (has links)
No abstract available. / Thesis (Ph.D.)-University of Natal, Durban, 1986.
83

Air pollution control measures implemented by the South African iron and steel industries

Ramalope, Deborah 02 April 2014 (has links)
M.Sc. (Environmental Management) / With the rapid expansion of the industries in South Africa, environmental problems including air pollution have been increasing. Among industries that cause air pollution is the iron and steel industry. Air pollution impacts negatively on the environment and therefore the measures implemented to improve air quality by this industry were investigated. The purpose of this thesis was to critically analyse the air pollution control measures implemented by the iron and steel industry in South Africa and to find out what they are doing to address the problem of air pollution, as well as their processes in involving and encouraging community involvement with regard to environmental issues. The key findings from this study were that the South African iron and steel companies are doing their best in trying to control the problem of air pollution. Some of them do not only rely on the South African legislation, they also do self-regulation by monitoring and controlling the air pollution problems even if not strictly required to by legislation. The iron and steel industry does also involve communities, through participation in public environmental forums. Air pollution has always been an issue in South Africa, but due to a lack of enabling legislation in the country, many people were not aware of their environmental rights. Now that the South African Constitution highlights the rights of people to an environment that is not harmful to their health or wellbeing, people are becoming more aware and have started taking the issue of air pollution in a very serious light. With the new environmental legislation including the National Environmental Management Act 108 of 1009 and the National Environmental Management: Air Quality Bill (Draft 1, April 2003), most of the issues relating to air pollution will be dealt with in a better and more enforceable way.
84

Monitoring toxicity in raw water of the Cache la Pourdre River and Sheldon Lake, Colorado, USA using biomarkers and molecular marker technology

Oberholster, Paul Johan 01 September 2006 (has links)
Abstract available in file 07summary.pdf / Thesis (PhD (Microbiology))--University of Pretoria, 2007. / Microbiology and Plant Pathology / unrestricted
85

The development, application and evaluation of advanced source apportionment methods

Balachandran, Sivaraman 13 January 2014 (has links)
Ambient and indoor air pollution is a major cause of premature mortality, and has been associated with more than three million preventative deaths per year worldwide. Most of these health impacts are from the effects from fine particulate matter. It is suspected that PM2.5 health effects vary by composition, which depends on the mixture of pollutants emitted by sources. This has led to efforts to estimate relationships between sources of PM2.5 and health effects. The health effects of PM2.5 may be preferentially dependent on specific species; however, recent work has suggested that health impacts may actually be caused by the net effect of the mixture of pollutants which make up PM2.5. Recently, there have been efforts to use source impacts from source apportionment (SA) studies as a proxy for these multipollutant effects. Source impacts can be quantified using both receptor and chemical transport models (RMs and CTMs), and have both advantages and limitations for their use in health studies. In this work, a technique is developed that reconciles differences between source apportionment (SA) models by ensemble-averaging source impacts results from several SA models. This method uses a two-step process to calculate the ensemble average. An initial ensemble average is used calculate new estimates of uncertainties for the individual SA methods that are used in the ensemble. Next, an updated ensemble average is calculated using the SA method uncertainties as weights. Finally, uncertainties of the ensemble average are calculated using propagation of errors that includes covariance terms. The ensemble technique is extended to include a Bayesian formulation of weights used in ensemble-averaging source impacts. In a Bayesian approach, probabilistic distributions of the parameters of interest are estimated using prior distributions, along with information from observed data. Ensemble averaging results in updated estimates of source impacts with lower uncertainties than individual SA methods. Overall uncertainties for ensemble-averaged source impacts were ~45 - 74%. The Bayesian approach also captures the expected seasonal variation of biomass burning and secondary impacts. Sensitivity analysis found that using non-informative prior weighting performed better than using weighting based on method-derived uncertainties. The Bayesian-based source impacts for biomass burning correlate better with observed levoglucosan (R2=0.66) and water soluble potassium (R2=0.63) than source impacts estimated using more traditional methods, and more closely agreed with observed total mass. Power spectra of the time series of biomass burning source impacts suggest that profiles/factors associated with this source have the greatest variability across methods and locations. A secondary focus of this work is to examine the impacts of biomass burning. First a field campaign was undertaken to measure emissions from prescribed fires. An emissions factor of 14±17 g PM2.5/kg fuel burned was determined. Water soluble organic carbon (WSOC) was highly correlated with potassium (K) (R2=.93) and levoglucosan (R2=0.98). Results using a biomass burning source profile derived from this work further indicate that source apportionment is sensitive to levels of potassium in biomass burning source profiles, underscoring the importance of quantifying local biomass burning source profiles. Second, the sensitivity of ambient PM2.5 to various fire and meteorological parameters in was examined using the method of principle components regression (PCR) to estimate sensitivity of PM2.5 to fire data and, observed and forecast meteorological parameters. PM2.5 showed significant sensitivity to PB, with a unit-based sensitivity of 3.2±1 µg m-3 PM2.5 per 1000 acres burned. PM2.5 had a negative sensitivity to dispersive parameters such as wind speed.
86

A comparative evaluation of non-linear time series analysis and singular spectrum analysis for the modelling of air pollution

Diab, Anthony Francis 12 1900 (has links)
Thesis (MScEng)--University of Stellenbosch, 2000. / ENGLISH ABSTRACT: Air pollution is a major concern III the Cape Metropole. A major contributor to the air pollution problem is road transport. For this reason, a national vehicle emissions study is in progress with the aim of developing a national policy regarding motor vehicle emissions and control. Such a policy could bring about vehicle emission control and regulatory measures, which may have far-reaching social and economic effects. Air pollution models are important tools 10 predicting the effectiveness and the possible secondary effects of such policies. It is therefore essential that these models are fundamentally sound to maintain a high level of prediction accuracy. Complex air pollution models are available, but they require spatial, time-resolved information of emission sources and a vast amount of processing power. It is unlikely that South African cities will have the necessary spatial, time-resolved emission information in the near future. An alternative air pollution model is one that is based on the Gaussian Plume Model. This model, however, relies on gross simplifying assumptions that affect model accuracy. It is proposed that statistical and mathematical analysis techniques will be the most viable approach to modelling air pollution in the Cape Metropole. These techniques make it possible to establish statistical relationships between pollutant emissions, meteorological conditions and pollutant concentrations without gross simplifying assumptions or excessive information requirements. This study investigates two analysis techniques that fall into the aforementioned category, namely, Non-linear Time Series Analysis (specifically, the method of delay co-ordinates) and Singular Spectrum Analysis (SSA). During the past two decades, important progress has been made in the field of Non-linear Time Series Analysis. An entire "toolbox" of methods is available to assist in identifying non-linear determinism and to enable the construction of predictive models. It is argued that the dynamics that govern a pollution system are inherently non-linear due to the strong correlation with weather patterns and the complexity of the chemical reactions and physical transport of the pollutants. In addition to this, a statistical technique (the method of surrogate data) showed that a pollution data set, the oxides of Nitrogen (NOx), displayed a degree of non-linearity, albeit that there was a high degree of noise contamination. This suggested that a pollution data set will be amenable to non-linear analysis and, hence, Non-linear Time Series Analysis was applied to the data set. SSA, on the other hand, is a linear data analysis technique that decomposes the time series into statistically independent components. The basis functions, in terms of which the data is decomposed, are data-adaptive which makes it well suited to the analysis of non-linear systems exhibiting anharmonic oscillations. The statistically independent components, into which the data has been decomposed, have limited harmonic content. Consequently, these components are more amenable to prediction than the time series itself. The fact that SSA's ability has been proven in the analysis of short, noisy non-linear signals prompted the use of this technique. The aim of the study was to establish which of these two techniques is best suited to the modelling of air pollution data. To this end, a univariate model to predict NOx concentrations was constructed using each of the techniques. The prediction ability of the respective model was assumed indicative of the accuracy of the model. It was therefore used as the basis against which the two techniques were evaluated. The procedure used to construct the model and to quantify the model accuracy, for both the Non-linear Time Series Analysis model and the SSA model, was consistent so as to allow for unbiased comparison. In both cases, no noise reduction schemes were applied to the data prior to the construction of the model. The accuracy of a 48-hour step-ahead prediction scheme and a lOO-hour step-ahead prediction scheme was used to compare the two techniques. The accuracy of the SSA model was markedly superior to the Non-linear Time Series model. The paramount reason for the superior accuracy of the SSA model is its adept ability to analyse and cope with noisy data sets such as the NOx data set. This observation provides evidence to suggest that Singular Spectrum Analysis is better suited to the modelling of air pollution data. It should therefore be the analysis technique of choice when more advanced, multivariate modelling of air pollution data is carried out. It is recommended that noise reduction schemes, which decontaminate the data without destroying important higher order dynamics, should be researched. The application of an effective noise reduction scheme could lead to an improvement in model accuracy. In addition to this, the univariate SSA model should be extended to a more complex multivariate model that explicitly encompasses variables such as traffic flow and weather patterns. This will explicitly expose the inter-relationships between the variables and will enable sensitivity studies and the evaluation of a multitude of scenarios. / AFRIKAANSE OPSOMMING: Die hoë vlak van lugbesoedeling in die Kaapse Metropool is kommerwekkend. Voertuie is een van die hoofoorsake, en as gevolg hiervan word 'n landswye ondersoek na voertuigemissie tans onderneem sodat 'n nasionale beleid opgestel kan word ten opsigte van voertuigemissie beheer. Beheermaatreëls van so 'n aard kan verreikende sosiale en ekonomiese uitwerkings tot gevolg hê. Lugbesoedelingsmodelle is van uiterste belang in die voorspelling van die effektiwiteit van moontlike wetgewing. Daarom is dit noodsaaklik dat hierdie modelle akkuraat is om 'n hoë vlak van voorspellingsakkuraatheid te handhaaf. Komplekse modelle is beskikbaar, maar hulle verg tyd-ruimtelike opgeloste inligting van emmissiebronne en baie berekeningsvermoë. Dit is onwaarskynlik dat Suid-Afrika in die nabye toekoms hierdie tydruimtelike inligting van emissiebronne gaan hê. 'n Alternatiewe lugbesoedelingsmodel is dié wat gebaseer is op die "Guassian Plume". Hierdie model berus egter op oorvereenvoudigde veronderstellings wat die akkuraatheid van die model beïnvloed. Daar word voorgestel dat statistiese en wiskundige analises die mees lewensvatbare benadering tot die modellering van lugbesoedeling in die Kaapse Metropool sal wees. Hierdie tegnieke maak dit moontlik om 'n statistiese verwantskap tussen besoedelingsbronne, meteorologiese toestande en besoedeling konsentrasies te bepaal sonder oorvereenvoudigde veronderstellings of oormatige informasie vereistes. Hierdie studie ondersoek twee analise tegnieke wat in die bogenoemde kategorie val, naamlik, Nie-lineêre Tydreeks Analise en Enkelvoudige Spektrale Analise (ESA). Daar is in die afgelope twee dekades belangrike vooruitgang gemaak in die studieveld van Nie-lineêre Tydreeks Analise. 'n Volledige stel metodes is beskikbaar om nie-lineêriteit te identifiseer en voorspellingsmodelle op te stel. Dit word geredeneer dat die dinamika wat 'n besoedelingsisteem beheer nie-lineêr is as gevolg van die sterk verwantskap wat dit toon met weerpatrone asook die kompleksiteit van die chemiese reaksies en die fisiese verplasing van die besoedelingstowwe. Bykomend verskaf 'n statistiese tegniek (die metode van surrogaatdata) bewyse dat 'n lugbesoedelingsdatastel, die okside van Stikstof (NOx), melineêre gedrag toon, alhoewel daar 'n hoë geraasvlak is. Om hierdie rede is die besluit geneem om Nie-lineêre Tydreeks Analise aan te wend tot die datastel. ESA daarenteen, is 'n lineêre data analise tegniek. Dit vereenvoudig die tydreeks tot statistiese onafhanklike komponente. Die basisfunksies, in terme waarvan die data vereenvoudig is, is data-aanpasbaar en dit maak hierdie tegniek gepas vir die analise van nielineêre sisteme. Die statisties onafhanklike komponente het beperkte harmoniese inhoud, met die gevolg dat die komponente aansienlik makliker is om te voorspel as die tydreeks self. ESA se effektiwitiet is ook al bewys in die analise van kort, hoë-graas nie-lineêre seine. Om hierdie redes, is ESA toegepas op die lugbesoedelings data. Die doel van die ondersoek was om vas te stel watter een van die twee tegnieke meer gepas is om lugbesoedelings data te analiseer. Met hierdie doelwit in sig, is 'n enkelvariaat model opgestel om NOx konsentrasies te voorspel met die gebruik van elk van die tegnieke. Die voorspellingsvermoë van die betreklike model is veronderstelom as 'n maatstaf van die model se akkuraatheid te kan dien en dus is dit gebruik om die twee modelle te vergelyk. 'n Konsekwente prosedure is gevolg om beide die modelle te skep om sodoende invloedlose vergelyking te verseker. In albei gevalle was daar geen geraasverminderings-tegnieke toegepas op die data nie. Die akuraatheid van 'n 48-uur voorspellingsmodel en 'n 100-uur voorspellingsmodel was gebruik vir die vergelyking van die twee tegnieke. Daar is bepaal dat die akkuraatheid van die ESA model veel beter as die Nie-lineêre Tydsreeks Analise is. Die hoofrede vir die ESA se hoër akkuraatheid is die model se vermoë om data met hoë geraasvlakke te analiseer. Hierdie ondersoek verskaf oortuigende bewyse dat Enkelvoudige Spektrale Analiese beter gepas is om lugbesoedelingsdata te analiseer en gevolglik moet hierdie tegniek gebruik word as meer gevorderde, multivariaat analises uitgevoer word. Daar word aanbeveel dat geraasverminderings-tegnieke, wat die data kan suiwer sonder om belangrike hoë-orde dinamika uit te wis, ondersoek moet word. Hierdie toepassing van effektiewe geraasverminderings-tegniek sal tot 'n verbetering in model-akkuraatheid lei. Aanvullend hiertoe, moet die enkele ESA model uitgebrei word tot 'n meer komplekse multivariaat model wat veranderlikes soos verkeersvloei en weerpatrone insluit. Dit sal die verhoudings tussen veranderlikes ten toon stel en sal sensitiwiteit-analises en die evaluering van menigte scenarios moontlik maak.
87

Intercomparison of thermal-optical-flame inoization and combustion-nondispersive infrared methods for the measurement of total carbon in environmental samples.

January 2001 (has links)
Sze Sai-tim. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 77-82). / Abstracts in English and Chinese. / Acknowledgment --- p.i / Abstract (English) --- p.ii / Abstract (Chinese) --- p.iii / List of Figures --- p.iv / List of Tables --- p.v / Chapter 1. --- INTRODUCTION / Chapter 1.1 --- Air pollution in Hong Kong --- p.1 / Chapter 1.2 --- Chemical speciation of carbon in air particulates --- p.3 / Chapter 1.3 --- Carbonaceous compounds in air and their harmful effects --- p.6 / Chapter 1.4 --- Review of analytical techniques for carbon determination --- p.14 / Chapter 1.5 --- Research objective --- p.18 / Chapter 1.6 --- Brief description of the project --- p.20 / Chapter 2. --- INSTRUMENTATION AND THEORY / Chapter 2.1 --- Thermal-optical-FID method --- p.21 / Chapter 2.2 --- Combustion-NDIR method --- p.27 / Chapter 2.3 --- Comparison between two methods --- p.28 / Chapter 2.4 --- Materials used for preparing standards --- p.30 / Chapter 2.5 --- Filter media for thermal analysis of carbon containing aerosols --- p.31 / Chapter 3. --- EXPERIMENTAL / Chapter 3.1 --- Instrumentation --- p.33 / Chapter 3.2 --- Apparatus --- p.33 / Chapter 3.3 --- Reagents --- p.35 / Chapter 3.4 --- Analysis time and operation temperature --- p.36 / Chapter 3.5 --- Procedures --- p.38 / Chapter 4. --- RESULTS AND DISCUSSION / Chapter 4.1 --- Particulate matter concentration in air --- p.43 / Chapter 4.2 --- Calibration --- p.43 / Chapter 4.3 --- Recovery study of total carbon in Standard Reference Material --- p.47 / Chapter 4.4 --- Study of filter deposit homogeneity --- p.50 / Chapter 4.5 --- Determination of total carbon in air particulates --- p.52 / Chapter 4.6 --- Further comparison of two methods by determination of total carbon in different sample type (river suspended solids) --- p.61 / Chapter 4.7 --- Repeatability of time of evolution and quantity of carbon determined by thermal optical-FID --- p.70 / Chapter 4.8 --- Reproducibility of measuring total carbon in PM2 5 and PM10 --- p.73 / Chapter 5. --- CONCLUSION --- p.75 / Chapter 6. --- REFERENCES --- p.77
88

Assessment of airborne lead sources in Hong Kong using stable lead isotopic ratios.

January 2001 (has links)
Poon Lok-man. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 126-128). / Abstracts in English and Chinese. / ABSTRACT --- p.ii / ACKNOWLEDGEMENT --- p.v / LIST OF TABLES --- p.vi / LIST OF FIGURES --- p.vii / GLOSSARY --- p.viii / Chapter CHAPTER 1: --- INTRODUCTION --- p.1 / Chapter CHAPTER 2: --- AIR POLLUTANTS AND ENVIRONMENTAL MONITORING --- p.8 / Chapter CHAPTER 3: --- PRINCIPLE OF LEAD FINGERPRINTING --- p.15 / Chapter CHAPTER 4: --- INSTRUMENTATION AND THEORY --- p.20 / Chapter CHAPTER 5: --- OPTIMIZATION OF ANALYTICAL PERFORMANCE IN LEAD ISOTOPE ANALYSIS --- p.29 / Chapter CHAPTER 6: --- DETERMINATION OF LEAD CONTENTS AND ISOTOPIC RATIOS IN POTENTIAL AIRBORNE LEAD SOURCES --- p.55 / Chapter CHAPTER 7: --- DETERMINATION OF LEAD CONTENT IN PARTICULATES COLLECTED ONTO HV-FILTERS --- p.69 / Chapter CHAPTER 8: --- ENVIRONMENTAL SURVEY --- p.74 / Chapter CHAPTER 9: --- "CONCLUSIONS, LIMITATIONS AND FURTHER DIRECTION" --- p.97 / APPENDICES --- p.105 / BIBLIOGRAPHY --- p.126
89

Development and application of a new passive sampling device : the lipid-free tube (LFT) sampler

Quarles, Lucas W. 29 September 2009 (has links)
Contaminants can exist in a wide range of states in aqueous environments, especially in surface waters. They can be freely dissolved or associated with dissolved or particulate organic matter depending on their chemical and physical characteristics. The freely dissolved fraction represents the most bioavailable fraction to an organism. These freely dissolved contaminants can cross biomembranes, potentially exerting toxic effects. Passive sampling devices (PSDs) have been developed to aid in sampling many of these contaminants by having the ability to distinguish between the freely dissolved and bound fraction of a contaminant. A new PSD, the Lipid-Free Tube (LFT) sampler was developed in response to some of the shortcomings of other current PSD that sample hydrophobic organic contaminants (HOCs). The device and laboratory methods were original modeled after a widely utilized PSD, the semipermeable membrane device (SPMD), and then improved upon. The effectiveness, efficiency, and sensitivity of not only the PSD itself, but also the laboratory methods were investigated. One requirement during LFT development was to ensure LFTs could be coupled with biological analyses without deleterious results. In an embryonic zebrafish developmental toxicity assay, embryos exposed to un-fortified LFT extracts did not show significant adverse biological response as compared to controls. Also, LFT technology lends itself to easy application in monitoring pesticides at remote sampling sites. LFTs were utilized during a series of training exchanges between Oregon State University and the Centre de Recherches en Ecotoxicologie pour le Sahel (CERES)/LOCUSTOX laboratory in Dakar, Senegal that sought to build "in country" analytical capacity. Application of LFTs as biological surrogates for predicting potential human health risk endpoints, such as those in a public health assessment was also investigated. LFT mass and accumulated contaminant masses were used directly, representing the amount of contaminants an organism would be exposed to through partitioning assuming steady state without metabolism. These exposure concentrations allow for calculating potential health risks in a human health risk model. LFT prove to be a robust tool not only for assessing bioavailable water concentrations of HOCs, but also potentially providing many insights into the toxicological significance of aquatic contaminants and mixtures. / Graduation date: 2010
90

Wind erosion modelling system parameters to determine a practical approach for wind erosion assessments

Liebenberg-Enslin, Hanlie 15 July 2014 (has links)
Ph.D. (Geography) / The focus of Aeolian research has mainly been on wind-blown dust from desert and arid areas. Numerous dust emission schemes have been developed over the years aimed at accurately estimating dust emission rates from various soil types and land use surfaces. Limited research has been done on wind-blown dust from smaller area sources – such as mine tailings and ash storage facilities. Lately, the concern about the environmental and health impacts, caused by dust from mine tailings storage facilities and ash disposal sites, has become more prominent, calling for better methods in determining dust emissions and their related impacts. This thesis established a practical approach for wind-blown dust emissions estimation and dispersion modelling from mine waste and ash storage facilities for the purpose of legal compliance assessment. Extensive research on the physics of wind erosion has been done over the past decade, compelling the re-evaluation of previously applied techniques. The latest and most widely applied dust emission schemes are evaluated to determine, through systematic testing of parameterisation and validation, using empirical mine waste and coal ash data, a best-practice prescription for quantifying wind-blown dust emissions and determining effects on a local scale using commercially available dispersion models. The applicability of two dust-flux schemes, (one developed by Marticorena and Bergametti (1995) and the simplified Shao 2004 scheme, as reported in 2011) for the quantification of wind-blown dust emissions, were tested using site specific particle size distribution data, bulk density and moisture content from six gold- and one platinum- tailings storage facilities and from two ash storage facilities. The availability of the required input parameters and the uncertainty associated with these parameters, were tested. The dependency of the Shao et al. (2011) model on plastic pressure (P) and the coefficient cy, both of which are not easily determined, added to the uncertainty of the emission rates. In this study, P and cy were both interpolated using the range limits provided by Shao (2004) for natural soils. By calculating P, using the salt and calcium carbonate content, similar values were obtained. The minimally disturbed dust fraction, as required by the Shao et al. (2011) scheme were derived from particle size distribution analysis but found to be more representative of the fully disturbed particle size faction (𝜂fi) and therefore needed to be corrected to represent the minimally disturbed particle size faction (𝜂mi) through the application of a correction factor, CF𝜂mi. Specific attention was given to the quantification of the threshold friction velocity (u*t) and the threshold velocities (u*), and how these two parameters relate to each under variable wind speed and time durations. This was tested using sub-hourly averaged meteorological data, one set reflected 5-minute intervals and the other 10-minute intervals. Dependent on the frequency and strength of the sub-hourly wind gusts, the resulting dust-flux rates were found to vary significantly when based on hourly averaged wind data in comparison with 5- and 10-minute wind data. Dispersion models are useful tools in air quality management. Whereas ambient monitoring provides actual ambient concentrations for specific pollutants at set locations, atmospheric dispersion models can be used to simulate any number of pollutants and determine the impacts at any location within the modelling domain. These dust-flux schemes of Marticorena and Bergametti (1995) and Shao et al. (2011) have been coupled with the US EPA regulatory Gaussian plume AERMOD dispersion model for the simulation of ground level concentrations resulting from wind-blown dust from mine tailings facilities. For this study, two Case Studies were evaluated; one included two of the gold mine tailings and the second focused on the platinum tailings. Simulated ambient near surface concentrations were validated with ambient monitored data for the same period as used in the model. For the Marticorena and Bergametti (1995) dust-flux scheme, only z0 had to be adjusted to provide a good fit with measured data – whereas the Shao et al. (2011) scheme resulted in significantly higher concentrations, resulting in an over-prediction of the measured data. By applying the correction factor, CF𝜂mi, to the minimally disturbed dust fraction, the predicted concentrations improved considerably. The coupling of the dust-flux schemes with a regulatory Gaussian plume model provided simulated ground level PM10 concentrations in good agreement with measured data. The best correlation was found under conditions of high wind speeds when the prevailing wind was from the direction of the tailings storage facility. This thesis demonstrates that simulated impacts from complex source groups can be performed, within an acceptable range of certainty, using widely applied dust-flux schemes. These dust-flux schemes, developed primarily for large-scale desert and arid areas, have been demonstrated to be applicable also to small-scale sources, of the order of 1 km2, and can be coupled to regularly available dispersion models for impact evaluations of wind-blown dust. The value of this improved approach to the mining and mineral processing industries are substantial, allowing for more accurate health risks and adverse environmental assessments from wind-blown dust from large material storage piles, a source category that has hitherto been difficult to quantify.

Page generated in 0.122 seconds