Spelling suggestions: "subject:"poly(ribose)polymérisation"" "subject:"poly(adpribose)polymérisation""
1 |
Interactome des intervenants dans le métbolisme du poly(ADP-ribose)Isabelle, Maxim 19 April 2018 (has links)
La poly(ADP-ribose) polymerases consistant en une population hétérogène de polymères formés à partir du NAD. La poly(ADP-ribose) glycohydrolase est responsable de la dégradation du poly(ADP-ribose). Les activités enzymatiques de ces enzymes constituent un système de régulation pour différents sentiers métaboliques. En effet, l'interaction démontrée entre le pADPr et de multiples protéines a permis de confirmer un rôle de modulateur de nombreuses voies de signalisation tel que la réparation de l'ADN, apoptose, cycle cellulaire, surveillance de l'intégrité du génome, transcription et modulation de la chromatine. Ainsi, nous avons formulé l'hypothèse que le pADPr pourrait coordonner la réparation des lésions à l'ADN et la progression du cycle cellulaire avec la signalisation d'événement apoptotiques. Une approche efficace constituerait à identifier et caractériser les protéines (intermédiaires) associées au pADPr selon une logique temporelle. Les diverses actions du pADPr sur les processus biologiques dépendent (dans le cas de la majorité du pADPr, soit celui métabolisé par PARP-1) de la gravité des dommages induits à l'ADN. Par conséquent, il existe probablement des points de seuil faisant basculer les voies de signalisation de la réparation vers la mort cellulaire. Une approche réductionniste, dans ce type de problème, ne peut apporter des réponses satisfaisantes. L'utilisation de la protéomique quantitative semble être une approche plus appropriée. Un volet du travail présenté dans cette thèse visait à identifier des partenaires des PARP-1, PARP-2 et PARG dans le but de reconnaître les sentiers biochimiques qui pourraient inclure une composante de poly(ADP-ribosylation) dans leur régulation et définir des interactions fonctionnellement pertinentes. Par la suite, nous avons établi un réseau dynamique des complexes associés au pADPr en fonction du temps suivant un dommage alkylant induit par un stress génotoxique. Ainsi, certains événements modulés par le pADPr ont été analysés et cartographies. De plus, nous avons caractérisé un rôle novateur du pADPr dans la formation des granules de stress suite à un stress génotoxique. En conséquence, nos résultats ont permis d'édifier les premières bases pour la biologie des systèmes de la poly(ADP-ribosyl)ation en fournissant un répertoire d'interactions protéique exhaustif.
|
2 |
Rôle de la poly (ADP-ribose) polymérase-1 (PARP-1)dans la réparation de l'ADN par excision de nucléotidesRobu, Mihaela 16 April 2018 (has links)
Les dommages directs induits à l'ADN par les radiations ultraviolettes (UV) sont éliminés grâce à la réparation par excision de nucleotides (NER). La poly(ADP-ribose) polymerase-1 (PARP-1) est une enzyme impliquée dans différentes voies de réparation de l'ADN. Notre laboratoire a montré que la PARP-1 était activée par les dommages directs dus aux UV et que son absence retarde significativement la réparation de ces dommages dans un gène rapporteur viral. Le but de ce projet était de déterminer si la PARP-1 affectait le NER de l'ADN génomique des cellules eucaryotes. Nous avons observé un délai dans la réparation des dommages directs à l'ADN causés par les UV dans les cellules eucaryotes n'exprimant pas la PARP-1. De plus, la PARP-1 immunoprécipite in vivo avec des protéines impliquées dans la phase de reconnaissance de ces dommages. Nos résultats montrent donc que la PARP-1 joue aussi un rôle dans le NER.
|
3 |
Charting PARP-1 dependent mechanisms for DNA double-strand break resectionO'Sullivan, Julia 10 February 2024 (has links)
L'intégrité de l'ADN génomique humain est maintenue par des systèmes de réparation de l'ADN qui protègent les cellules des dommages causés par des agents environnementaux ou des lésions spontanées de l'ADN. Chaque cellule peut subir jusqu'à 10⁵ lésions par jour, y compris les cassures double-brin de l'ADN (CDB). La poly(ADPribosyl)ation (PARylation) est l'un des premiers événements de signalisation moléculaire survenant aux CDBs. Il est catalysé par les poly(ADP-ribose)polymérases (PARP) qui sont directement activées par ces lésions d'ADN. Le fait de ne pas générer de poly(ADP)ribosyl (pADPr) en réponse à des dommages à l'ADN par une inhibition chimique ou par l'absence de PARP-1 augmente la sensibilité cellulaire au stress génotoxique, indiquant que la pADPr elle-même est une molécule clé de signalisation des dommages à l'ADN. L'inhibition de l'enzyme de signalisation des dommages à l'ADN, la poly(ADP-ribose) polymérase-1 (PARP-1) est l'une des nouvelles thérapies les plus prometteuses contre le cancer. Les inhibiteurs de PARP sensibilisent les cellules cancéreuses aux agents endommageant l'ADN et tuent efficacement les cellules cancéreuses du sein, des ovaires et du pancréas déficientes en BRCA1 (Breast Cancer gene 1) et BRCA2 (Breast Cancer gene 2), ce qui suggère que les cellules déficientes en réparation des CDBs sont extrêmement sensibles à l'inhibition de PARP. Pourtant, les mécanismes sous-jacents à cette létalité synthétique entre le déficit de réparation du CDB et l'inhibition de PARP restent mal définis. Il y a un débat considérable sur le mécanisme par lequel l'inhibition de PARP tue les cellules déficientes en réparation de l'ADN, et le plein potentiel des inhibiteurs de PARP dans le traitement du cancer ne peut être obtenu que par une compréhension claire des voies de réponse aux dommages de l'ADN (DDR) aux CDB et comment ils sont affectés par les inhibiteurs de PARP. L'objectif général de ma thèse est d'étudier le rôle de PARP-1 dans la réparation DSB et d'identifier les interacteurs de PARP-1 qui jouent également un rôle dans ce processus. Les cellules eucaryotes réparent les CDBs par deux voies principales, la jonction d'extrémité non homologue (NHEJ) et la recombinaison homologue (HR). La HR est initiée par la liaison des CDBs par BRCA1 et le complexe MRE11-RAD50-NBS1 et des nucléases EXO1/DNA2 pour générer de l'ADN simple-brin, qui est ensuite utilisé par la recombinase RAD51 et le complexe BRCA1-PALB2-BRCA2. Une question clé dans notre domaine concerne les facteurs critiques pour réguler le choix de la voie CDB. HR est initiée à partir d'extrémités DSB hautement résectées, tandis que dans le NHEJ, la résection est empêchée par des facteurs de réparation clés incluant RIF1 et 53BP1. En utilisant des cellules déficientes en PARP-1, nous avons observé que deux inhibiteurs de la résection de l'ADN et des régulateurs de choix de voie, RIF1 et 53BP1, la formation de foyers induits par des dommages à l'ADN sont fortement altérés. Cela confirme notre hypothèse selon laquelle PARP-1 participe à la réparation du DSB en influençant la résection de l'ADN. Afin de mieux comprendre le mécanisme de résection et le rôle que PARP-1 y joue, nous avons identifié d'autres protéines qui interagissent avec PARP-1 et modulent ce processus. Pour ce faire, nous avons utilisé des données sur les protéines de liaison au pADPr générées à la fois dans notre laboratoire et celui de notre collaborateur Ted Dawson de Johns Hopkins. Les candidats sélectionnés à partir de ces listes ont été criblés pour identifier une seule cible qui démontrerait un phénotype similaire à la perte de PARP-1. Deux cibles initiales ont été explorées et finalement une seule protéine à doigt de zinc a été choisie comme cible principale. Nous devons relever la fonction de ce doigt de zinc en HR, dans l'espoir qu'il permettra de découvrir davantage les mécanismes de PARP-1 en résection. En résumé, cette thèse élucide le rôle de PARP-1 dans la résection de l'ADN et identifie une protéine à doigt de zinc non étudiée auparavant qui interagit avec PARP-1 et partage une fonction similaire à PARP-1 dans la résection de l'ADN. / The integrity of human genomic DNA is maintained by DNA repair systems that will protect cells from damage by environmental agents or spontaneous DNA lesions. Each cell can experience up to 10⁵ lesions daily, including DNA double-strand breaks (DSB)s. Poly(ADP-ribosyl)ation (PARylation) is one of the earliest molecular signalling events occurring at DNA DSBs. It is catalysed by poly(ADP-ribose) polymerases (PARPs) that are directly activated by those DNA lesions. Failure to generate pADPr in response to DNA damage by either chemical inhibition or absence of PARP-1 increases the cellular sensitivity to genotoxic stress, indicating that pADPr itself is a key DNA damage signalling molecule. Inhibition of the DNA damage signalling enzyme poly(ADP-ribose) polymerase-1 (PARP-1) is among the most promising new therapies in cancer. PARP inhibitors sensitize cancer cells to DNA damaging agents and efficiently kill BRCA1- and BRCA2-deficient breast, ovarian and pancreatic cancer cells, suggesting that cells deficient in DSB repair are exquisitely sensitive to PARP inhibition. Yet, the mechanisms underlying this synthetic lethality between DSB repair deficiency and PARP inhibition remain poorly defined. There is considerable debate about the mechanism through which PARP inhibition kills DNA repair-deficient cells, and the full benefit of PARP inhibitors in cancer therapy can only be achieved by a clear understanding of the DNA damage response (DDR) pathways to DSBs and how these are affected by PARP inhibitors. The overall aim of my PhD is to investigate the role of PARP-1 in DSB repair and identify interactors of PARP-1 which also play a role in this process. Eukaryotic cells repair DSBs by two major pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR). HR is initiated by the binding of DSB by BRCA1 and the end resection of the DSB by MRE11 (and the associated NBS1, RAD50, CtIP, and EXO1) to generate single-stranded DNA, which is further processed by RAD51 and BRCA1-PALB2-BRCA2. A key question in our field regards which factors are critical for regulating the DSB pathway choice. HR is initiated from highly resected DSB ends, whereas in NHEJ, resection is prevented by key repair factors that include RIF1 and 53BP1. Using PARP-1-deficient cells, we have observed that two inhibitors of DNA resection and regulators of pathway choice, RIF1 and 53BP1, are strongly impaired in forming DNA damage-induced foci. This supports our hypothesis that PARP-1 participates in DSB repair by influencing DNA resection. In order to further understand the mechanism of resection and the role that PARP-1 plays in it we also aim to identify other proteins which interact with PARP-1 and modulate this process. To accomplish this, we made use of data on PAR binding proteins generated both in our lab and that of our collaborator Ted Dawson. The candidates selected from these lists were screened to identify a single target that would demonstrate a similar phenotype to PARP-1 loss. Two initial targets were further explored and finally a single zinc finger protein was selected as our primary target. We aim to characterize the function of this zinc finger in HR, in the hopes that it will further uncover the mechanisms of PARP-1 in resection. In summary this thesis elucidates the role of PARP-1 in DNA resection and identifies a previously unstudied zinc finger protein which interacts with PARP-1 and shares a similar function to PARP-1 in DNA resection.
|
4 |
Proteomique fonctionnelle des poly(ADP-Ribose) polymerasesMoreel, Xavier 16 April 2018 (has links)
L'ADN, support de l'information génétique, subit chaque jour de nombreuses attaques pouvant induire différents types de lésions. Que ce soit d'origine environnementale (agents chimiques), rayonnements ionisants) ou d'origine endogène (métabolisme de L'ADN, radicaux libres), chacun de ces agents peut provoquer des cassures simple ou double-brin dans la molécule d'ADN. Ces lésions doivent être détectées rapidement et réparées fidèlement, afin d'éviter d'engendrer une mutation pouvant déclencher une maladie telle le cancer, ou encore éviter de se transmettre à la descendance. Au cours de l'évolution, la cellule eucaryote a développé différentes voies spécifiques pour répondre à un stress génotoxique. Ainsi il existe un véritable réseau de surveillance et d'évaluation des dommages permettant à la cellule lésée de réparer l'ADN ou d'entrer en apoptose si les dommages sont trop importants. La poly(ADP-ribosyl)ation des protéines est une modification post-traductionnelle qui intervient rapidement dès qu'une cassure dans la molécule d'ADN est détectée. Le polymère est synthétisé à partir du NAD+ par une famille d'enzymes appelées PARP (poly(ADP-ribose)polymérase), dont le rôle principal est la maintien de l'intégrité du génome. Cette modification affecte les propriétés physico-chimiques ainsi que la fonction des protéines cibles. Celle-ci permet, entre autre, le recrutement des enzymes de réparation de l'ADN. Ce signal demeure toutefois transitoire, le polymère formé étant rapidement dégradé par la PARG (poly(ADP-ribose)glycohydrolase. Ce travail présente une analyse structurale de la PARP-3, un membre peu caractérisé de la famille PARP, ainsi qu'une analyse fonctionnelle de mutants de phosphorylation de la PARP-1 (premier article) qui montre que la phosphorylation du premier doigt de zinc de cette protéine altère son recrutement et sa persistance aux sites de cassure de l'ADN. Par ailleurs, de nombreuses évidences montrent que que la poly(ADP-ribosyl)ation des protéines peut survenir dans un contexte autre que les dommages à l'ADN, le second article présente les métabolismes qui peuvent être associés aux PARP-1 et 2 ainsi qu'à la PARG et monte un possible nouveau rôle biologique pour la PARP-1.
|
5 |
Analyses biochimique et protéomique de la poly(ADP-ribosyl)ationTardif, Maxime 17 April 2018 (has links)
La poly(ADP-ribosyl)ation est une modification post-traductionnelle qui est stimulée en réponse à des dommages à l'ADN. Les poly(ADP-ribose) polymerases (PARPs) synthétisent des polymères branchés de poly(ADP-ribose) (PAR) qui peuvent se lier de manière covalente et non-covalente à des protéines jouant ainsi un rôle dans des processus tels que la progression du cycle cellulaire, la réparation de l'ADN, la stabilité de l'intégrité génomique et l'apoptose. Le cycle de dégradation du PAR induit aussi une variation des réserves en nucleotides comme le NAD+, l'ATP et l'AMP, influençant les voies énergétiques des cellules. Les techniques de « Matrix Assisted Laser Desorption Ionisation » (MALDI) et de quantification de nucleotides par colorimétrie, fluorométrie et HPLC ont été utilisées pour déterminer de nouveaux partenaires protéiques interagissant avec le polymère d'ADPr, par l'entremise d'interaction directe, covalente et non-covalente, ou par l'entremise d'interaction indirecte, via le cycle de synthèse/dégradation du PAR qui induit d'importants changements métaboliques cellulaires.
|
6 |
Roles of poly(ADP-ribose) polymerase-1 in the ultraviolet radiation-induced skin carcinogenesisPurohit, Nupur 01 October 2021 (has links)
L'exposition aux rayons ultraviolets (UV) est essentielle à la vie et bénéfique pour la santé humaine. Cependant, la surexposition aux UV solaires, en particulier aux UVB, rayons les plus énergétiques atteignant la surface terrestre, peut entrainer des cancers de la peau chez l'être-humain comme les cancers de la peau de type non-mélanome (NMSC). La capacité des UVB à initier des NMSC provient principalement de leurs habilités à causer des dommages directs à l'ADN, tels que les dimères cyclobutyliques de pyrimidine (CPD) et les produits pyrimidine-pyrimidone (6-4PP), qui sont pris en charge par le mécanisme de réparation par excision de nucléotide (NER). L'incidence croissante de NMSC chez les patients déficients pour l'une des protéines de la NER souligne l'importance d'un processus fonctionnel. Par conséquent, une meilleure compréhension des mécanismes moléculaires de la NER permettrait de mettre en évidence de nouvelles cibles thérapeutiques pour la prévention ou le traitement des cancers de la peau. L'une des premières réponses cellulaires aux dommages CPD/6-4PP induits par UVB dans la peau des mammifères est l'activation de l'enzyme nucléaire poly(ADP-ribose) polymérase-1 (PARP1) qui catalyse la formation de polymères d'ADP-ribose. Les précédents travaux de notre laboratoire et d'autres équipes ont démontré que PARP1 et son activité enzymatique facilitent la NER en collaboration avec la protéine UV-damaged DNA binding protein 2 (DDB2), qui va aussi s'accumuler rapidement aux sites CPD/6-4PP pendant la phase de reconnaissance des dommages à l'ADN de la NER. Cependant, plusieurs aspects des interactions de PARP1 avec DDB2 et avec les dommages directs à l'ADN sont inconnus. Ainsi, le premier objectif de mon projet de doctorat a été de caractériser précisément la nature de la liaison de PARP1 aux dommages CPD/6-4PP induits par UV vis-à-vis la protéine DDB2. Mes recherches ont mis en évidence l'empreinte asymétrique formée par PARP1 de -12 à +9 nucléotides de chaque côté des dommages CPD/6-4PP en présence ou en absence de DDB2. Nous avons également démontré que PARP1 augmente l'affinité de DDB2 pour les dommages CPD/6-4PP. De plus, les résultats de notre étude indiquent un rôle de PARP1 indépendant de DDB2 pendant la phase de reconnaissance des dommages à l'ADN. Cibler PARP1 et son rôle dans les voies de réparation des dommages à l'ADN est l'une des stratégies les plus efficaces développées ces dernières années pour le traitement des cancers des ovaires et du sein. L'application translationnelle de mon projet de doctorat a alors été de comprendre le rôle de PARP1 dans la NER dans le contexte des NMSC. À cet égard, nous avons développé un modèle PARP1-KO dans la lignée de souris SKH-1, qui est un modèle largement adopté pour étudier les NMSC induits par UVB. Puisque les souris SKH-1 développent principalement des carcinomes spinocellulaires (CSC) cutanés après une exposition chronique aux UVB, notre étude rapporte le rôle de PARP1 dans le développement des CSC. En utilisant les souris nouvellement créées SKH-1 PARP1-KO et les souris SKH-1 PARP1-WT avec ou sans application topique d'inhibiteurs de PARP, nous avons mis en évidence que l'absence de PARP1 ou de son activité dans la peau des souris SKH-1 mâles et femelles réduit significativement le fardeau tumoral des CSC et prolonge la période de latence du développement tumoral. L'étude hebdomadaire de l'apparition et de la croissance de tumeurs tout au long du protocole révèlent aussi que cibler PARP1 est très efficace pour ralentir, à l'étape pré-maligne, le développement de CSC. Nos résultats sont surprenants à la lumière des propriétés onco-suppressives rapportées de PARP1 et de son activité catalytique dans des cas de cancérogenèse induits par des dommages à l'ADN causés par des agents alkylants, ainsi que de la susceptibilité croissante des souris knock-out pour d'autres protéines de la NER à développer des CSC induits par UVB. Le rôle de PARP1 dans les mécanismes cellulaires induits par UVB autres que la NER, comme la mort cellulaire et les modulations immunes, pourrait expliquer nos observations. Alors que d'autres analyses sont nécessaires pour comprendre le rôle de PARP1 dans ces mécanismes, notre étude met en avant l'utilisation potentielle d'inhibiteurs de PARP comme nouvel agent chimiopréventif contre les CSC induits par UVB. / The exposure to solar ultraviolet radiation (UV) is essential to life and beneficial to human health. However, an overexposure to terrestrial solar UV, especially its most energetic component UVB, can cause skin cancers including the non-melanoma skin cancers (NMSC) in humans. The NMSC initiating properties of UVB arise predominantly from their ability to cause direct DNA damage such as cyclobutane pyrimidine dimers (CPD) and 6-4photoproducts (6-4PP), which are repaired via nucleotide excision repair (NER) pathway. The increased incidence of NMSC in patients with hereditary defects in NER pathway proteins underscores the importance of efficient NER in humans. Therefore, detailed understanding of the molecular operation of NER pathway can provide novel therapeutic targets for the prevention or treatment of skin cancers. One of the earliest responses of the mammalian skin cells to UVB-induced CPD or 6-4PP is the activation of the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP1), which catalyzes the formation of polymers of ADP-ribose (PAR). The previous work from other teams and our laboratory have shown that PARP1 and its enzymatic activity facilitate NER in collaboration with UV-damaged DNA binding protein 2 (DDB2), which also rapidly accumulates at the CPD/6-4PP site during the DNA damage recognition stage of NER. However, many aspects of interaction of PARP1 with DDB2 and direct DNA damage are not understood. Therefore, the first aim of my doctoral project was to characterize the precise nature of binding of PARP1 vis-à-vis DDB2 at UV-induced CPD/6-4PP. My doctoral research demonstrates that PARP1 casts asymmetric footprint from −12 to +9 nucleotides on either side of the CPD/6-4PP in presence or absence of DDB2. We also demonstrated that PARP1 facilitates the binding of DDB2 to CPD/6-4PP. Moreover, our study reports DDB2-independent role of PARP1 during the DNA damage recognition phase in NER. Targeting the role of PARP1 in DNA strand break repair pathways has emerged as one of the successful strategies for the treatment of ovarian and breast cancers in last decade. Consequently, the ultimate translational goal of my doctoral project was to understand the implication of NER facilitating role of PARP1 in NMSC. In this regard, we first developed a PARP1-KO model in the albino hairless SKH-1 mouse strain, which is a widely adopted mouse model to study UVB-induced NMSC. Since SKH-1 mice mainly develop cutaneous squamous cell carcinoma (SCC) upon chronic UVB-exposure, our present study reports the role of PARP1 in development of SCC. Using the newly developed PARP1-KO and PARP1-WT SKH-1 mice with or without topical application of PARP inhibitor, we report that the absence of PARP1 or its activity in skin of both male and female SKH-1 mice significantly reduces the SCC tumor burden and prolongs the tumor latency period. The analyses of appearance and growth of individual tumors on a weekly basis during this protocol also revealed that targeting of PARP1 was most effective in suppressing the premalignant stage of the SCC development. Our results are surprising in light of the reported onco-suppressive property of PARP1 and its catalytic activity in alkylating DNA damage-induced tumorigenesis and the increased susceptibility of other NER protein knock-out mice to UVB-induced SCC. We reason that the roles of PARP1 in UVB-induced cellular processes other than NER, such as cell death and immune modulations, can account for our observation. While further studies are required to understand these roles of PARP1 in UVB-induced cellular processes, our study underscores the potential for use of PARP inhibitors as a novel chemopreventive agents against UVB-induced SCC.
|
7 |
PARP-1 activation regulates the DNA damage response to DNA double-strand breaksKrietsch, Jana 20 April 2018 (has links)
Les cassures double-brin de l'ADN, lorsque incorrectement réparées, peuvent avoir des conséquences fatales telles que des délétions et des réarrangements chromosomiques, favorisant la carcinogenèse. La poly(ADP-ribosyl)ation réalisée par la protéine poly(ADP-ribose) polymérase-1 (PARP-1) est l'une des premières modifications post-traductionnelles qui se produisent en réponse aux dommages à l'ADN. La PARP-1 utilise la nicotinamide pour générer un polymère chargé négativement, nommé poly(ADP-ribose) polymère (PAR), lequel est attaché en majorité à la PARP-1 elle-même ainsi qu'à d'autres protéines cibles. Le PAR a récemment été reconnu comme un signal de recrutement pour certaines protéines de réparation aux sites de dommages à l'ADN, mais un débat est en cours quant au rôle précis de la PARP-1 et du PAR dans la réponse aux dommages de l'ADN. Au cours de mon projet de doctorat, nous avons pu confirmer que les protéines qui se retrouvent en complexe avec le PAR immédiatement après les dommages à l'ADN sont principalement des facteurs de réparation. Étonnamment, les complexes protéiques associés au PAR pendant la période de récupération suite aux dommages sont enrichis en facteurs de liaison à l'ARN. Toutefois, la protéine liant l'ARN la plus abondante que nous avons détectée dans l'interactome du PAR, soit NONO, ne suit pas cette dernière cinétique puisqu'elle est fortement enrichie immédiatement après les dommages à l'ADN. Notre étude subséquente de NONO dans la réponse aux cassures double-brin de l'ADN a étonnamment révélé une implication directe de celle-ci par le mécanismede réparation de jonction des extrémités non-homologues. En plus, nous avons constaté que NONO se lie fortement et spécifiquement au PAR via son motif 1 de la reconnaissance de l'ARN, soulignant la compétition entre les PAR et l'ARN pour le même site de liaison. Fait intéressant, le recrutement in vivo de NONO aux sites de dommages de l'ADN dépend entièrement du PAR et nécessite le motif 1 de la reconnaissance de l'ARN. En conclusion, nos résultats établissent NONO comme une nouvelle protéine impliquée dans la réponse aux cassures double-brin de l'ADN et plus généralement démontrent un autre niveau de complexité supplémentaire dans l'interdépendance de la biologie de l'ARN et la réparation de l'ADN. / DNA double-strand breaks are potentially lethal lesions, which if not repaired correctly, can have harmful consequences such as carcinogenesis promoted by chromosome deletions and rearrangements. Poly(ADP-ribosyl)ation carried out by poly(ADP-ribose) polymerase 1 (PARP-1) is one of the first posttranslational modifications occurring in response to DNA damage. In brief, PARP-1 uses nicotinamide to generate a negatively charged polymer called poly(ADP-ribose) polymer (PAR), that can be attached to acceptor proteins, which is to a large extent PARP-1 itself. PAR has recently been recognized as a recruitment signal for key DNA repair proteins to sites of DNA damage but the precise role of PARP-1 and its catalytic product PAR in the DNA damage response are still a matter of ongoing debate. Throughout my doctoral work, we confirmed that the proteins in complex with PAR promptly after DNA damage are mostly DNA repair proteins, whereas during the period of recovery from DNA damage, the PAR interactome is highly enriched with RNA processing factors. Interestingly, one of the most abundant RNA-binding proteins detected in the PAR interactome, namely NONO, did not follow these kinetics as it was highly enriched immediately after DNA damage in the DNA repair protein complexes centered on PAR. Our subsequent investigation of NONO in the DNA damage response to double-strand breaks strikingly revealed a direct implication for NONO in repair by nonhomologous end joining (NHEJ). Moreover, we found that NONO strongly and specifically binds to PAR through its RNA-recognition motif 1 (RRM1), highlighting competition between PAR and RNA for the same binding site. Remarkably, the in vivo recruitment of NONO to DNA damage sites completely depends on PAR and requires the RRM1 motif. In conclusion, our results establish NONO as a new protein implicated in the DNA damage response to double-strand break and in broader terms add another layer of complexity to the cross-talk between RNA-biology and DNA repair.
|
8 |
Étude sur l'interaction entre les différents domaines de la PARP-1 et diverses structures de l'ADNHerrera Farje, Carmen de Fatima 16 April 2018 (has links)
D'après notre stratégie de clonage, nous avons obtenu des protéines recombinantes dérivées de la PARP-1 correspondantes au premier doigt de Zn (Znl), au deuxième doigt de Zn (Zn2), au troisième doigt de Zn (Zn3), au domaine DB-WRG-CAT et au domaine WRG-CAT. Pour démontrer que Znl et Zn2 interagissent avec l'ADN simple brin nous avons utilisé des essais de retard sur gel (EMSA). Nos résultats suggèrent que Znl et Zn2 ont la capacité de se lier à l'ADN simple brin avec une haute préférence pour poly (dA), poly (T) et poly (dC). Parmi les sondes d'ADN simple brin, Zn3 a montré une affinité pour poly(T), poly(dG) et poly(dC). Remarquablement, Zn3 a montré une forte Uaison aux sondes d'ARN. Ce résultat nous pennet de suggérer un rôle de Zn3 dans le processus de transcription. L'enzyme pourrait être en contact avec des hybrides ARN-ADN lors de ce processus. Cependant le rôle précis de Zn3 reste encore à établir. Les doigts de Znl, Zn2 et Zn3 ainsi que le fragment WGR-CAT n'ont montré aucune affinité pour l'ADN double brin. Par ailleurs, nous avons clone une région de 60 acides aminés situés entre le domaine BRCT et le domaine WRG de la protéine PARP-1; nous l'avons baptisée région DB. Le fragment DB-WRG-CAT a montré une forte affinité par l'ADN double brin. Ce résultat suggère que la région DB est responsable de l'interaction de la protéine PARP-1 avec l'ADN double brin. Pour déterminer si la PARP-1 se lie à une structure de l'ADN simple brin et double brin, et pour démontrer si cette interaction est capable d'activer l'enzyme, nous avons construit différentes structures d'ADN qui comportent une boucle d'adénine ou de thymidine. Nos résultats suggèrent que l'ADN qui comporte une jonction entre simple et double brin agit comme un activateur potentiel de la PARP-1. Finalement, nous proposons un modèle qui pennet de comprendre l'interaction de la PARP-1 avec l'ADN qui est retrouvé dans plusieurs processus biologiques.
|
9 |
PARP-1 : interaction du domaine de liaison à l'adn avec des oligonucléotides simple brinHuambachano Calderon, Orlando Sandro 17 April 2018 (has links)
La PARP-1 est une enzyme modulaire très conservée, dont la structure comprend: 1) un domaine amino-terminal de liaison à l'ADN (DBD), contenant un signal de localisation nucléaire et trois doigts de zinc Znl, Zn2 et le Zn3 récemment découverts, ces trois doigts agissent comme détecteur moléculaire de cassures dans l'ADN; 2) un domaine régulateur central contenant un motif BRCT et des sites accepteurs de poly (ADP-ribose) permettant d'inactiver la PARP-1 (réaction d'automodification) ; et 3) un domaine carboxy-terminal catalytique renfermant le site actif. Dans notre étude, après avoir clone différentes protéines recombinantes par PCR, nous avons fait des essais de poly (ADP) ribosylation sur des extraits crus des cellules. En outre, nous avons fait des essais de retardement sur gel (EMSA) avec des oligonucleotides pour évaluer les interactions des peptides, correspondants aux fragments du domaine DBD, avec ces oligonucleotides afin d'essayer d'expliquer le mode d'activation de l'enzyme.
|
10 |
Rôle de la poly(ADP-ribose) polymérase 1 dans la reconnaissance et la réparation des dommages directs induits à l'ADN par les radiations ultraviolettesRobu, Mihaela 14 September 2024 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2017-2018 / La poly(ADP-ribose) polymérase 1 (PARP1) est une enzyme nucléaire très abondante chez les eucaryotes supérieurs, humains compris, mais néanmoins absente chez les bactéries et les levures. En réponse aux dommages à l’ADN, elle utilise le substrat nicotinamide adénine dinucléotide (NAD+) pour former des polymères d’ADP-ribose (PAR) sur elle-même et sur d’autres protéines cibles. L’enzyme PARP1 et son activité catalytique sont impliquées dans la réparation des dommages à l’ADN contenant des cassures simple et double brin. Cependant, l’hypothèse que l’enzyme PARP1 joue un rôle dans la réparation de dommages sans cassures de brin a toujours rencontré des réticences. Par exemple, la PARP1 est activée rapidement par ces dommages, comme ceux induits par les radiations ultraviolettes (UV), mais son rôle dans leur réparation par excision de nucléotides (NER) n’était pas accepté généralement. Ainsi, ce projet de doctorat consiste à déterminer le mécanisme exact par lequel la PARP1 et son activité catalytique contribuent à la NER. Cette voie de réparation utilise plus de 30 protéines pour réparer une très grande variété de dommages. Bien que nous ayons une bonne connaissance des étapes de la NER grâce aux études in vitro chez les bactéries et les levures, les facteurs qui influencent le fonctionnement de la NER chez les eucaryotes supérieurs ne sont pas tous connus. Cependant, de récentes études ont montré que des complexes de remodelage de la chromatine et des modifications post-traductionnelles facilitent la NER dans la chromatine. Dans ce contexte, l’implication de la modification posttraductionnelle effectuée par la PARP1, dite PARylation, est encore inconnue dans la NER. Dans la NER, l’étape cruciale de la réparation globale du génome est la reconnaissance des quelques bases endommagées qui sont entourées de nombreuses bases non modifiées par la protéine «Xeroderma pigmentosum C» (XPC). Un autre facteur clé de cette phase est le facteur «UV-damaged DNA binding protein 2» (DDB2) qui fait partie du complexe ubiquitine-ligase UV-DDB. Ici, nous avons démontré que, après irradiation aux UVC, la PARP1 se lie asymétriquement à la photolésion et elle interagit avec le facteur DDB2. Ce dernier stimule l’activité catalytique de la PARP1 et est à son tour PARylé par la PARP1. Les polymères formés autour de la photolésion agissent comme signal de recrutement pour le complexe PARP1-XPC déjà présent dans le nucléoplasme. La confluence de ces facteurs de réparation au site de dommage assure la séparation de la protéine XPC de ce complexe suivi de son transfert et de sa stabilisation autour du dommage. Ainsi, la PARP1 n'est pas seulement l'une des premières protéines recrutées aux lésions induites par les UV, mais son activation rapide par ces dommages joue un rôle clé dans les étapes situées en aval de la phase de reconnaissance des dommages de la NER. En effet, nous avons montré que l’inhibition ou la déplétion de la PARP1 ralentit radicalement la réparation par la NER des dommages directs induits à l’ADN par les UV. Cette étude montre que la PARP1, en coopération avec les protéines DDB2 et XPC augmente l’efficacité de la voie NER dans les cellules des mammifères. / Poly(ADP-ribose) polymerase 1 (PARP1) is a highly abundant nuclear enzyme which is present in higher eukaryotes but absent in bacteria and yeasts. In response to DNA damage, it uses the nicotinamide adenine dinucleotide (NAD+) to form polymers of ADPribose (PAR) on itself and other target proteins. PARP1 and its catalytic activity are involved in the repair of DNA damages comprising of single and double strand breaks. However, the role of PARP1 in repairing DNA damage without strand breaks has not been readily accepted. For example, although PARP1 is rapidly activated in response to such damages caused by ultraviolet radiation (UV), its role in their repair by nucleotide excision repair pathway (NER) was not generally recognized. Thus, the project of my doctoral work is to determine the exact mechanism by which PARP1 and its catalytic activity influence NER. This pathway uses more than 30 proteins to repair a wide variety of DNA damages. Although we have a good understanding of NER steps through studies in vitro, bacteria and yeasts, we still do not know all the factors that influence the functioning of the NER in higher eukaryotes including humans. Recent studies have shown that chromatin remodelling complexes and post-translational modifications facilitate NER in the context of chromatin. However, the contribution of PARylation, the post-translational modification carried out by PARP1, in NER remains largely unknown. Xeroderma pigmentosum C protein (XPC) plays a crucial role in NER by recognizing the few UV induced lesions in the vast undamaged chromatin. Another key factor in damage recognition is the UV- damaged DNA binding protein (DDB2), which is part of the UV-DDB ubiquitin-ligase complex. Here, we have demonstrated that after UVC irradiation, PARP1 binds asymmetrically to the photolesions and interacts with DDB2. DDB2 stimulates the catalytic activity of PARP1 and in turn it is PARylated. The polymers formed around the photolesion act as recruitment signal for the PARP1-XPC complex already present in the nucleoplasm. The confluence of these repair factors at the damage site ensures the separation of the XPC protein from its complex with PARP1 followed by its transfer and stabilization at the site of damage. Thus, PARP1 is not only one of the first proteins to respond to UV induced DNA damage, but also its early rapid activation plays a key role in the downstream events of NER. Indeed, we have shown that both inhibition and depletion of PARP1 significantly delays the repair of these lesions. This study demonstrates that PARP1 increases the efficiency of NER in cooperation with the DDB2 and XPC proteins in mammalian cells.
|
Page generated in 0.0684 seconds