Spelling suggestions: "subject:"poly(ribose)polymerase (PARP)"" "subject:"poly(adpribose)polymerase (PARP)""
1 |
Rôle de la poly(ADP-ribose)polymérase dans l'activation et l'agrégation plaquettaires à la suite d'une ischémie cérébrale / Role of poly(ADP-ribose)polymerase in platelet activation and aggregation after a cerebral ischemiaLechaftois, Marie 25 November 2013 (has links)
Les accidents vasculaires cérébraux (AVC) constituent la 3e cause de mortalité dans les pays industrialisés, et sont à 80% de type ischémique (AVCi). A l’heure actuelle, le seul traitement disponible est l’activateur tissulaire du plasminogène recombinant (rt-PA), dont l’utilisation est très limitée, en raison d’une fenêtre thérapeutique étroite et de l’augmentation du risque de transformations hémorragiques (TH). Après un AVCi, les cliniciens sont confrontés, entre autres, à 3 objectifs d’ordre vasculaire: (1) reperfuser les tissus ischémiés, (2) éviter les TH, ainsi que (3) les ré-occlusions précoces ou tardives. Les travaux du laboratoire ont précédemment établi qu’après une ischémie cérébrale (IC), l’hyperactivation de la poly(ADP-ribose)polymérase (PARP), une enzyme nucléaire, est (1) neurotoxique et (2) contribue aux TH spontanées ou induites par le rt-PA. Par ailleurs, des études suggèrent que les inhibiteurs de PARP pourraient également réduire les phénomènes de ré-occlusion, en inhibant l’activation/agrégation plaquettaires, et ceci via 2 mécanismes : (1) « PARP-indépendant », lié à une analogie structurale de certains inhibiteurs de PARP avec des agonistes plaquettaires, comme l’ADP, et (2) « PARP-dépendant », lié à leur effet anti-inflammatoire. Cependant, à l’heure actuelle, il n’existe aucune donnée dans l’IC. Dans ce contexte, ce travail a consisté à évaluer les effets de plusieurs inhibiteurs de PARP sur l’activation et l’agrégation plaquettaire. Il nous est notamment apparu nécessaire de rechercher si la réduction des TH par les inhibiteurs de PARP pourrait être liée, au moins en partie, à une activité pro-agrégante, qui compromettrait leur association avec le rt-PA. A l’inverse, une activité anti-agrégante, bien que favorisant les hémorragies, pourrait améliorer la reperfusion ou diminuer les risques de ré-occlusion. Dans la 1ère partie, nos résultats montrent in vitro que deux inhibiteurs de PARP (PJ34 et minocycline) sont anti-agrégants plaquettaires, et que cet effet serait « PARP-indépendant », puisque deux autres inhibiteurs de PARP, le 3-aminobenzamide et l’INO-1001, n’ont pas modifié l’agrégation. De plus, sur du sang humain, mais pas murin, le PJ34 exerce un effet anti-agrégant, qui pourrait être lié à un antagonisme du récepteur à l’ADP, P2Y12. La 2nde partie a été réalisé sur des modèles in vivo chez la souris. L’utilisation de 3 tests d’exploration des fonctions plaquettaires (temps de saignement, modèles de thromboembolie pulmonaire et de thrombose carotidienne par le FeCl3) a mis en évidence l’absence d’effet du PJ34 et de la minocycline sur les fonctions plaquettaires, et notamment, pas d’effet pro-agrégant pouvant expliquer la réduction des TH. Dans un modèle de thrombose de l’artère cérébrale moyenne par le FeCl3, le PJ34 n’entrave pas la thrombolyse par le rt-PA, mais au contraire, pourrait tendre à l’améliorer. Parallèlement, dans un modèle d’IC chez la souris, nos travaux ont mis en évidence une augmentation cérébrale de l’adhésion des plaquettes et de l’expression d’ICAM-1. La suite de cette étude sera d’étudier si les inhibiteurs de PARP, en protégeant la paroi vasculaire, pourraient réduire les phénomènes de ré-occlusion. L’ensemble de ce travail s’inscrit dans une thématique plus globale de notre laboratoire qui vise à identifier l’intérêt d’associer un inhibiteur de PARP au rt-PA pour une meilleure prise en charge de la thrombolyse post-AVCi. / Stroke is the 3rd leading cause of death in industrialized countries and 80% are ischemic. The recombinant tissue-plasminogen activator (rt-PA) is currently the only available treatment but its use remains very limited due to a narrow therapeutic window and an increased risk of hemorrhagic transformation (HT). After ischemic stroke, the key vascular objectives of clinicians are : (1) to reperfuse ischemic tissue, (2) to avoid both HT and (3) early or late reocclusions. Our laboratory previously established that after cerebral ischemia (CI), the overactivation of poly(ADP-ribose)polymerase (PARP), a nuclear enzyme, is (1) neurotoxic and (2) contributes to spontaneous or rt-PA-induced HT. Moreover, studies suggest that PARP inhibitors could also reduce the risk of reocclusion by inhibiting platelet activation/aggregation via two mechanisms : (1) one is "PARP-independent" and linked to a structural analogy of certain PARP inhibitors with platelet agonists such as ADP, and (2) the second one is "PARP-dependent" and due to their anti-inflammatory effect. However, so far, there is no data in CI.In this context, the aim of this work was to evaluate the effects of several PARP inhibitors on platelet activation and aggregation. In particular, it appeared necessary to examine whether the reduction of HT by PARP inhibitors could be related, at least in part, to a pro-aggregatory activity, which would then compromise their association with rt-PA. By contrast, an anti-aggregatory activity could improve reperfusion or reduce the risk of reocclusion, although it would also contribute to hemorrhage. In the 1st part, our results show that, in vitro, two PARP inhibitors (PJ34 and minocycline) are antiplatelet agents and that this effect is "PARP-independent" since two other PARP inhibitors, 3-aminobenzamide and INO-1001 did not alter the aggregation. Moreover, in human blood but not in murine one, PJ34 exerts an anti-aggregatory effect which may be related to the antagonism of the ADP receptor P2Y12. The 2nd part was performed on in vivo models in mice. The use of three tests of platelet function exploration (bleeding time and models of pulmonary thromboembolism and FeCl3-induced carotid thrombosis) showed no effect of minocycline and PJ34 on platelet function and in particular, no pro-aggregatory effect which may explain the reduction of HT. In a thrombosis model of the middle cerebral artery by FeCl3, PJ34 does not impede the thrombolysis induced by rt-PA, but even tends to improve it. Meanwhile, in a CI model in mice, our work shows an increase of platelet adhesion and ICAM-1 expression in the brain. The next step will be to investigate whether PARP inhibitors could reduce reocclusions by protecting the vascular wall. All this work is part of a broader topic of our laboratory aims to identify the interest of combining a PARP inhibitor with rt-PA for a better management of post-ischemic thrombolysis.
|
2 |
Étude de la toxicité vasculaire de l’activateur tissulaire du plasminogène recombinant (rt-PA) après une ischémie cérébrale / Vascular toxicity induced by recombinant tissue plasminogen activator (rt-PA) after cerebral ischemiaGarraud, Marie 27 November 2014 (has links)
Le seul traitement actuellement disponible pour les accidents vasculaires cérébraux d’origine ischémique est la thrombolyse par l’activateur tissulaire du plasminogène recombinant (rt-PA). Cependant, l’efficacité du rt-PA est souvent partielle ou absente, et des phénomènes de réocclusion du vaisseau peuvent être observés. Par ailleurs, l’administration de rt-PA est associée à un risque hémorragique. Il apparaît donc indispensable de rechercher les mécanismes à l’origine de la toxicité vasculaire du rt-PA, afin de pouvoir développer des stratégies capables de protéger le lit vasculaire. Parmi ces stratégies, notre équipe a montré dans des modèles expérimentaux que l’inhibition d’une enzyme nucléaire, la poly(ADP-ribose) polymérase ou PARP, permet de protéger la barrière hémato-encéphalique, de réduire les hémorragies et d’améliorer la reperfusion cérébrale suite à l’administration post-ischémique de rt-PA. Dans ce contexte, mon travail a consisté à étudier les mécanismes impliqués dans les altérations vasculaires associées à l’administration de rt-PA à la suite de l’ischémie. Mes travaux de recherche ont comporté un volet in vivo et un volet in vitro. Les études réalisées in vivo ont été menées dans un modèle murin d’ischémie cérébrale thrombo-embolique. Nos résultats indiquent que ni l’ischémie, ni le rt-PA, ni l’association au rt-PA d’un puissant inhibiteur de PARP, le PJ34, ne modifient à 24 heures la présence de dépôts de fibrine, marqueur d’hypoperfusion et de réocclusion. Nous nous sommes ensuite intéressés à deux marqueurs endothéliaux d’inflammation : VCAM-1 et ICAM-1, et avons montré que leur expression, qui augmente 24 heures après l’ischémie, n’est pas modifiée par le rt-PA. Enfin, l’association du PJ34 au rt-PA réduit significativement l’expression post-ischémique de VCAM-1, ce qui suggère le rôle de la PARP dans l’expression de cette molécule d’adhésion. La seconde partie de mon travail a été réalisée in vitro sur une lignée de cellules endothéliales cérébrales murines (bEnd.3). Le rt-PA est à l’origine de changements caractéristiques au niveau de l’organisation et de la morphologie de ces cellules. Ces changements ne sont pourtant associés ni à une dégradation de l’expression des molécules de jonctions inter-endothéliales (occludine, VE-cadhérine), ni à une augmentation de l’expression des marqueurs endothéliaux pro-inflammatoires (VCAM-1, ICAM-1). Nous nous sommes également intéressés à d’autres marqueurs de dysfonction endothéliale, les microparticules endothéliales (MPE). Nos résultats montrent que le rt-PA est à l’origine d’une augmentation importante de la libération des MPE. L’utilisation d’un inhibiteur de la protéine p38, le SB203580, et d’un inhibiteur de PARP, le PJ34, permet de réduire cette augmentation, ce qui suggère que p38 et la PARP pourraient être impliquées dans la production de MPE induite par le rt-PA. En conclusion, l’ensemble de ce travail contribue à préciser les effets vasculaires du rt-PA. Parmi ces effets, la mise en évidence de la production de MPE, via la PARP, est particulièrement novatrice. / Thrombolysis with recombinant tissue plasminogen activator (rt-PA) is currently the only approved pharmacological strategy for acute ischemic stroke. However, the efficacy of rt-PA is rarely complete, and arterial reocclusion can be observed. Furthermore, administration of rt-PA increases the risk of hemorrhagic transformations. Therefore, it is essential to seek mechanisms underlying the vascular toxicity of rt-PA in order to develop strategies protecting the vascular bed. Among these strategies, our laboratory has previously shown that inhibition of poly (ADP-ribose) polymerase (PARP), a nuclear enzyme, protects the blood-brain barrier, reduces hemorrhagic transformations and improves cerebral reperfusion following the post-ischemic administration of rt-PA. In this context, the aim of the present work was to establish the post-ischemic mechanisms of rt-PA-induced vascular alterations. The research was divided into (1) in vivo experiments and (2) in vitro studies to examine the effect of rt-PA on the endothelium. The in vivo studies were performed in a mouse model of thrombo-embolic stroke induced by thrombin injection in the middle cerebral artery. Our results showed that neither ischemia, nor rt-PA, nor the association to rt-PA of the potent inhibitor of PARP PJ34 alter cerebral fibrin deposits, a marker of hypoperfusion and reocclusion, at 24 hours after ischemia. We then evaluated the expression of two endothelial markers of inflammation : VCAM-1 (vascular cell adhesion molecule-1) and ICAM-1 (intercellular adhesion molecule-1). Our results showed that their expressions increase 24 hours after ischemia and are not modified by rt-PA. Finally, the association of PJ34 to rt-PA significantly reduced the post-ischemic expression of VCAM-1, suggesting a role for PARP in the expression of this adhesion molecule. The second part of my work was carried out in vitro in cultures of mouse brain-derived endothelial cells bEnd.3. In the presence of rt-PA, the organization and the morphology of the endothelial cells radically changed. However, these changes were associated neither to a degradation of endothelial junction proteins (occludin, VE-cadherin (vascular endothelial-cadherin)), nor to an increase in the expression of pro-inflammatory endothelial markers (VCAM-1, ICAM-1). We were also interested in a recently identified marker of endothelial dysfunction : endothelial microparticles (EMP). Our results showed that rt-PA induces a significant increase in the EMP released by bEnd.3 cells. The use of a p38 inhibitor, SB203580, and the PARP inhibitor, PJ34, reduced this increase, suggesting that p38 and PARP could be involved in the EMP production induced by rt-PA. In conclusion, this work helps to clarify the vascular effects of rt-PA. Among these effects, the highlight of EMP production, through PARP pathway, is particularly original.
|
3 |
L’activation de la sirtuin 1 : une nouvelle stratégie neuroprotectrice pour le stress oxydant cérébral in vivo ? Implication dans les effets bénéfiques de l’inhibition de la poly(ADP-ribose)polymérase par le 3-aminobenzamide / Sirtuin 1 activation : a neuroprotective strategy for in vivo cerebral oxidative stress ? Involvement of SIRT1 in the beneficial effects of poly(ADP-ribose)polymerase inhibitionGueguen, Cindy 07 June 2013 (has links)
Le stress oxydant (SO) est un mécanisme commun à l’ischémie cérébrale et au traumatisme crânien qui entraîne notamment l’hyperactivation délétère de la poly(ADP-ribose)polymérase (PARP), une enzyme NAD+-dépendante. Cette dernière est impliquée dans le déficit neurologique et la lésion cérébrale consécutifs à ces pathologies. In vitro, l’hyperactivation de la PARP diminue le taux cérébral de NAD+, son substrat, et l’activité de la sirtuin 1 (SIRT1), une enzyme également NAD+-dépendante. L’activation de la SIRT1 est bénéfique au cours d’un SO in vitro. Si les effets bénéfiques de l’inhibition de la PARP ont été démontrés in vivo au cours d’un SO cérébral, l’implication de la SIRT1 ainsi que son rôle dans les effets de l’inhibition de la PARP n’ont pas été explorés. Dans la première partie de ce travail, nous avons mis en évidence qu’un modèle de SO cérébral induit in vivo chez le rat par une injection intrastriatale de malonate entraîne un SO prolongé, un déficit neurologique et une activation de la PARP associée à une diminution du NAD+. Dans la deuxième partie de ce travail, nous avons montré que le 3-aminobenzamide (3AB), un inhibiteur de la PARP, ne permet pas de s’opposer à la chute du NAD+ dans ce modèle, ce qui suggère que le NAD+ pourrait être consommé par d’autres enzymes NAD+-dépendantes, dont la SIRT1. L’inhibition de la PARP par le 3AB a permis d’augmenter le rapport activité/expression nucléaire de la SIRT1 et a entraîné sa translocation cytoplasmique au cours du SO. Un prétraitement par le SRT1720, un activateur spécifique de la SIRT1, diminue le déficit neurologique et la lésion striatale 6 heures après le SO cérébral, ce qui suggère que l’activation de la SIRT1 est bénéfique dans les conséquences d’un SO cérébral in vivo. L’association de l’inhibiteur de la PARP avec l’activateur de la SIRT1 (3AB+SRT1720) n’a pas potentialisé les effets protecteurs de chaque monothérapie. L’EX527, un inhibiteur de la SIRT1, ne modifie pas le déficit et la lésion. En revanche, l’association de l’inhibiteur de la PARP avec l’inhibiteur de la SIRT1 (3AB+EX527) supprime la récupération neurologique ainsi que la réduction de la lésion, induites par l’inhibition de la PARP seule (3AB). Ces données suggèrent que l’activation de la SIRT1 est impliquée dans les effets bénéfiques de l’inhibition de la PARP in vivo au cours d’un SO cérébral. En conclusion, l’ensemble de ce travail a permis une meilleure caractérisation de la PARP et de la SIRT1 au cours d’un SO cérébral in vivo. La SIRT1 pourrait constituer une cible pharmacologique pour le traitement des pathologies cérébrales au cours desquelles un SO est présent. De plus, nous avons montré que les effets bénéfiques de l’inhibition de la PARP sur les conséquences fonctionnelles et histologiques induites par le SO cérébral sont liés à l’activation de la SIRT1. / Oxidative stress (OS) is involved in cerebral ischemia and traumatic brain injury and results in deleterious activation of poly(ADP-ribose)polymerase (PARP), an NAD+-dependant enzyme. PARP is implicated in neurological deficit and brain injury post-ischemia and post-trauma. In vitro, PARP overactivation reduced both brain NAD+ levels, its substrate, and activity of sirtuin 1 (SIRT1), an other NAD+-dependant enzyme. SIRT1 activation is beneficial during in vitro OS. Even if the beneficial effects of PARP inhibition have been demonstrated, SIRT1 involvement during in vivo cerebral OS and its role in the beneficial effects of PARP inhibition have not been studied.In the first part, we demonstrated that in vivo cerebral OS induced by intrastriatal injection of malonate in rat promoted prolonged OS, neurological deficit, PARP activation and NAD+ decrease. In the second part, we showed that 3-aminobenzamide (3AB), a PARP inhibitor, did not reduce NAD+ loss, suggesting that NAD+ could be consumed by other NAD+-dependant enzymes, including SIRT1. The PARP inhibitor increased the nuclear SIRT1 activity/expression ratio and induced its cytoplasmic translocation during OS. SRT1720, a specific SIRT1 activator, reduced both neurological deficit and striatal lesion 6 hours after cerebral OS, suggesting that SIRT1 activation is beneficial on in vivo OS consequences. The combination of the PARP inhibitor with the SIRT1 activator (3AB + SRT1720) did not potentiate the neuroprotective effects of each strategy. EX527, a SIRT1 inhibitor, did not affect OS-induced deficit and lesion. However, association of the PARP inhibitor with the SIRT1 inhibitor (3AB + EX527) suppressed the neurological recovery and the reduction of lesion induced by 3AB alone. Our data suggested that SIRT1 activation is involved in the neuroprotective effects of PARP inhibition during in vivo cerebral OS. In conclusion, our work led to a better characterization of PARP and SIRT1 during in vivo cerebral OS. SIRT1 is a potential pharmacological target for the treatment of brain pathologies in which OS is present. In addition, SIRT1 activation is involved in the beneficial effects of PARP inhibition on functional and histological cerebral OS consequences
|
Page generated in 0.0881 seconds