• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Integer Programming Approach to Layer Planning in Communication Networks / Une approche de programmation entière pour le problème de planification de couches dans les réseaux de communication

Ozsoy, Aykut F. A. 12 May 2011 (has links)
In this thesis, we introduce the Partitioning-Hub Location-Routing problem (PHLRP), which can be classied as a variant of the hub location problem. PHLRP consists of partitioning a network into sub-networks, locating at least one hub in each subnetwork and routing the traffic within the network such that all inter-subnetwork traffic is routed through the hubs and all intra-subnetwork traffic stays within the sub-networks all the way from the source to the destination. Obviously, besides the hub location component, PHLRP also involves a graph partitioning component and a routing component. PHLRP finds applications in the strategic planning or deployment of the Intermediate System-Intermediate System (ISIS) Internet Protocol networks and the Less-than-truck load freight distribution systems. First, we introduce three IP formulations for solving PHLRP. The hub location component and the graph partitioning components of PHLRP are modeled in the same way in all three formulations. More precisely, the hub location component is represented by the p-median variables and constraints; and the graph partitioning component is represented by the size-constrained graph partitioning variables and constraints. The formulations differ from each other in the way the peculiar routing requirements of PHLRP are modeled. We then carry out analytical and empirical comparisons of the three IP formulations. Our thorough analysis reveals that one of the formulations is provably the tightest of the three formulations. We also show analytically that the LP relaxations of the other two formulations do not dominate each other. On the other hand, our empirical comparison in a standard branch-and-cut framework that is provided by CPLEX shows that not the tightest but the most compact of the three formulations yield the best performance in terms of solution time. From this point on, based on the insight gained from detailed analysis of the formulations, we focus our attention on a common sub-problem of the three formulations: the so-called size-constrained graph partitioning problem. We carry out a detailed polyhedral analysis of this problem. The main benet from this polyhedral analysis is that the facets we identify for the size-constrained graph partitioning problem constitute strong valid inequalities for PHLRP. And finally, we wrap up our efforts for solving PHLRP. Namely, we present the results of our computational experiments, in which we employ some facets of the size-constrained graph partitioning polytope in a branch-and-cut algorithm for solving PHLRP. Our experiments show that our approach brings signicant improvements to the solution time of PHLRP when compared with the default branch-and-cut solver of XPress. / Dans cette thèse, nous introduisons le problème Partitionnement-Location des Hubs et Acheminement (PLHA), une variante du problème de location de hubs. Le problème PLHA partitionne un réseau afin d'obtenir des sous-réseaux, localise au moins un hub dans chaque sous-réseau et achemine le traffic dans le réseau de la maniére suivante : le traffic entre deux sous-réseaux distincts doit être éxpedié au travers des hubs tandis que le traffic entre deux noeuds d'un même sous-réseau ne doit pas sortir de celui-ci. PLHA possède des applications dans le planning stratégique, ou déploiement, d'un certain protocole de communication utilisé dans l'Internet, Intermediate System - Intermediate System, ainsi que dans la distribution des frets. Premièrement, nous préesentons trois formulations linéaires en variables entières pour résoudre PLHA. Le partitionnement du graphe et la localisation des hubs sont modélisées de la même maniére dans les trois formulations. Ces formulations diffèrent les unes des autres dans la maniére dont l'acheminement du traffic est traité. Deuxièmement, nous présentons des comparaisons analytiques et empiriques des trois formulations. Notre comparaison analytique démontre que l'une des formulations est plus forte que les autres. Néanmoins, la comparaison empirique des formulations, via le solveur CPLEX, montre que la formulation la plus compacte (mais pas la plus forte) obtient les meilleures performances en termes de temps de résolution du problème. Ensuite, nous nous concentrons sur un sous-problème, à savoir, le partitionnement des graphes sous contrainte de taille. Nous étudions le polytope des solutions réalisables de ce sous-problème. Les facettes de ce polytope constituent des inégalités valides fortes pour PLHA et peuvent être utilisées dans un algorithme de branch-and-cut pour résoudre PLHA. Finalement, nous présentons les résultats d'un algorithme de branch-and-cut que nous avons développé pour résoudre PLHA. Les résultats démontrent que la performance de notre méthode est meilleure que celle de l'algorithme branch-and-cut d'Xpress.
2

Probabilistic Analysis of Optimal Solutions to Routing Problems in a Warehouse

Chaiken, Benjamin F. 04 October 2021 (has links)
No description available.
3

An integer programming approach to layer planning in communication networks / Une approche de programmation entière pour le problème de planification de couches dans les réseaux de communication

Ozsoy, Feyzullah Aykut 12 May 2011 (has links)
In this thesis, we introduce the Partitioning-Hub Location-Routing problem (PHLRP), which can be classified as a variant of the hub location problem.<p>PHLRP consists of partitioning a network into sub-networks, locating at least one hub in each subnetwork and routing the traffic within the network such that all inter-subnetwork traffic is routed through the hubs and all intra-subnetwork traffic stays within the sub-networks all the way from the source to the destination. Obviously, besides the hub location component, PHLRP also involves a graph partitioning component and a routing component. PHLRP finds applications in the strategic planning or deployment of the Intermediate System-Intermediate System (ISIS) Internet Protocol networks and the Less-than-truck load freight distribution systems.<p><p>First, we introduce three IP formulations for solving PHLRP. The hub location component and the graph partitioning components of PHLRP are<p>modeled in the same way in all three formulations. More precisely, the hub location component is represented by the p-median variables and constraints; and the graph partitioning component is represented by the size-constrained graph partitioning variables and constraints. The formulations differ from each other in the way the peculiar routing requirements of PHLRP are modeled.<p><p>We then carry out analytical and empirical comparisons of the three IP<p>formulations. Our thorough analysis reveals that one of the formulations is<p>provably the tightest of the three formulations. We also show analytically that the LP relaxations of the other two formulations do not dominate each other. On the other hand, our empirical comparison in a standard branch-and-cut framework that is provided by CPLEX shows that not the tightest but the most compact of the three formulations yield the best performance in terms of solution time. <p><p>From this point on, based on the insight gained from detailed analysis of the formulations, we focus our attention on a common sub-problem of the three formulations: the so-called size-constrained graph partitioning problem. We carry out a detailed polyhedral analysis of this problem. The main benefit from this polyhedral analysis is that the facets we identify for the size-constrained graph partitioning problem constitute strong valid inequalities for PHLRP.<p><p>And finally, we wrap up our efforts for solving PHLRP. Namely, we present<p>the results of our computational experiments, in which we employ some facets<p>of the size-constrained graph partitioning polytope in a branch-and-cut algorithm for solving PHLRP. Our experiments show that our approach brings<p>significant improvements to the solution time of PHLRP when compared with<p>the default branch-and-cut solver of XPress. <p><p>/<p><p>Dans cette thèse, nous introduisons le problème Partitionnement-Location des Hubs et Acheminement (PLHA), une variante du problème de location de hubs. Le problème PLHA partitionne un réseau afin d'obtenir des sous-réseaux, localise au moins un hub dans chaque sous-réseau et achemine le traffic dans le réseau de la maniére suivante :le traffic entre deux<p>sous-réseaux distincts doit être éxpedié au travers des hubs tandis que le traffic entre deux noeuds d'un même sous-réseau ne doit pas sortir de celui-ci. PLHA possède des applications dans le planning stratégique, ou déploiement, d'un certain protocole de communication utilisé<p>dans l'Internet, Intermediate System - Intermediate System, ainsi que dans la distribution des frets.<p><p>Premièrement, nous préesentons trois formulations linéaires en variables entières pour résoudre PLHA. Le partitionnement du graphe et la localisation des hubs sont modélisées de la même maniére dans les trois formulations. Ces formulations diffèrent les unes des autres dans la maniére dont l'acheminement du traffic est traité.<p><p>Deuxièmement, nous présentons des comparaisons analytiques et empiriques des trois formulations. Notre comparaison analytique démontre que l'une des formulations est plus forte que les autres. Néanmoins, la comparaison empirique des formulations, via le solveur CPLEX, montre que la formulation la plus compacte (mais pas la plus forte) obtient les meilleures performances en termes de temps de résolution du problème.<p><p>Ensuite, nous nous concentrons sur un sous-problème, à savoir, le partitionnement des graphes sous contrainte de taille. Nous étudions le polytope des solutions réalisables de ce sous-problème. Les facettes de ce polytope constituent des inégalités valides fortes pour<p>PLHA et peuvent être utilisées dans un algorithme de branch-and-cut pour résoudre PLHA.<p><p>Finalement, nous présentons les résultats d'un algorithme de branch-and-cut que nous avons développé pour résoudre PLHA. Les résultats démontrent que la performance de notre méthode est meilleure que celle de l'algorithme branch-and-cut d'Xpress.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
4

Integrated Airline Operations: Schedule Design, Fleet Assignment, Aircraft Routing, and Crew Scheduling

Bae, Ki-Hwan 05 January 2011 (has links)
Air transportation offers both passenger and freight services that are essential for economic growth and development. In a highly competitive environment, airline companies have to control their operating costs by managing their flights, aircraft, and crews effectively. This motivates the extensive use of analytical techniques to solve complex problems related to airline operations planning, which includes schedule design, fleet assignment, aircraft routing, and crew scheduling. The initial problem addressed by airlines is that of schedule design, whereby a set of flights having specific origin and destination cities as well as departure and arrival times is determined. Then, a fleet assignment problem is solved to assign an aircraft type to each flight so as to maximize anticipated profits. This enables a decomposition of subsequent problems according to the different aircraft types belonging to a common family, for each of which an aircraft routing problem and a crew scheduling or pairing problem are solved. Here, in the aircraft routing problem, a flight sequence or route is built for each individual aircraft so as to cover each flight exactly once at a minimum cost while satisfying maintenance requirements. Finally, in the crew scheduling or pairing optimization problem, a minimum cost set of crew rotations or pairings is constructed such that every flight is assigned a qualified crew and that work rules and collective agreements are satisfied. In practice, most airline companies solve these problems in a sequential manner to plan their operations, although recently, an increasing effort is being made to develop novel approaches for integrating some of the airline operations planning problems while retaining tractability. This dissertation formulates and analyzes three different models, each of which examines a composition of certain pertinent airline operational planning problems. A comprehensive fourth model is also proposed, but is relegated for future research. In the first model, we integrate fleet assignment and schedule design by simultaneously considering optional flight legs to select along with the assignment of aircraft types to all scheduled legs. In addition, we consider itinerary-based demands pertaining to multiple fare-classes. A polyhedral analysis of the proposed mixed-integer programming model is used to derive several classes of valid inequalities for tightening its representation. Solution approaches are developed by applying Benders decomposition method to the resulting lifted model, and computational experiments are conducted using real data obtained from a major U.S. airline (United Airlines) to demonstrate the efficacy of the proposed procedures as well as the benefits of integration. A comparison of the experimental results obtained for the basic integrated model and for its different enhanced representations reveals that the best modeling strategy among those tested is the one that utilizes a variety of five types of valid inequalities for moderately sized problems, and further implements a Benders decomposition approach for relatively larger problems. In addition, when a heuristic sequential fixing step is incorporated within the algorithm for even larger sized problems, the computational results demonstrate a less than 2% deterioration in solution quality, while reducing the effort by about 21%. We also performed an experiment to assess the impact of integration by comparing the proposed integrated model with a sequential implementation in which the schedule design is implemented separately before the fleet assignment stage based on two alternative profit maximizing submodels. The results obtained demonstrate a clear advantage of utilizing the integrated model, yielding an 11.4% and 5.5% increase in profits in comparison with using the latter two sequential models, which translates to an increase in annual profits by about $28.3 million and $13.7 million, respectively. The second proposed model augments the first model with additional features such as flexible flight times (i.e., departure time-windows), schedule balance, and demand recapture considerations. Optional flight legs are incorporated to facilitate the construction of a profitable schedule by optimally selecting among such alternatives in concert with assigning the available aircraft fleet to all the scheduled legs. Moreover, network effects and realistic demand patterns are effectively represented by examining itinerary-based demands as well as multiple fare-classes. Allowing flexibility on the departure times of scheduled flight legs within the framework of an integrated model increases connection opportunities for passengers, hence yielding robust schedules while saving fleet assignment costs. A provision is also made for airlines to capture an adequate market share by balancing flight schedules throughout the day. Furthermore, demand recapture considerations are modeled to more realistically represent revenue realizations. For this proposed mixed-integer programming model, which integrates the schedule design and fleet assignment processes while considering flexible flight times, schedule balance, and recapture issues, along with optional legs, itinerary-based demands, and multiple fare-classes, we perform a polyhedral analysis and utilize the Reformulation-Linearization Technique in concert with suitable separation routines to generate valid inequalities for tightening the model representation. Effective solution approaches are designed by applying Benders decomposition method to the resulting tightened model, and computational results are presented to demonstrate the efficacy of the proposed procedures. Using real data obtained from United Airlines, when flight times were permitted to shift by up to 10 minutes, the estimated increase in profits was about $14.9M/year over the baseline case where only original flight legs were used. Also, the computational results indicated a 1.52% and 0.49% increase in profits, respectively, over the baseline case, while considering two levels of schedule balance restrictions, which can evidently also enhance market shares. In addition, we measured the effect of recaptured demand with respect to the parameter that penalizes switches in itineraries. Using values of the parameter that reflect 1, 50, 100, or 200 dollars per switched passenger, this yielded increases in recaptured demand that induced additional profits of 2.10%, 2.09%, 2.02%, and 1.92%, respectively, over the baseline case. Overall, the results obtained from the two schedule balance variants of the proposed integrated model that accommodate all the features of flight retiming, schedule balance, and demand recapture simultaneously, demonstrated a clear advantage by way of $35.1 and $31.8 million increases in annual profits, respectively, over the baseline case in which none of these additional features is considered. In the third model, we integrate the schedule design, fleet assignment, and aircraft maintenance routing decisions, while considering optional legs, itinerary-based demands, flexible flight retimings, recapture, and multiple fare-classes. Instead of utilizing the traditional time-space network (TSN), we formulate this model based on a flight network (FN) that provides greater flexibility in accommodating integrated operational considerations. In order to consider through-flights (i.e., a sequence of flight legs served by the same aircraft), we append a set of constraints that matches aircraft assignments on certain inbound legs into a station with that on appropriate outbound legs at the same station. Through-flights can generate greater revenue because passengers are willing to pay a premium for not having to change aircraft on connecting flights, thereby reducing the possibility of delays and missed baggage. In order to tighten the model representation and reduce its complexity, we apply the Reformulation-Linearization Technique (RLT) and also generate other classes of valid inequalities. In addition, since the model possesses many equivalent feasible solutions that can be obtained by simply reindexing the aircraft of the same type that depart from the same station, we introduce a set of suitable hierarchical symmetry-breaking constraints to enhance the model solvability by distinguishing among aircraft of the same type. For the resulting large-scale augmented model formulation, we design a Benders decomposition-based solution methodology and present extensive computational results to demonstrate the efficacy of the proposed approach. We explored four different algorithmic variants, among which the best performing procedure (Algorithm A1) adopted two sequential levels of Benders partitioning method. We then applied Algorithm A1 to perform several experiments to study the effects of different modeling features and algorithmic strategies. A summary of the results obtained is as follows. First, the case that accommodated both mandatory and optional through-flight leg pairs in the model based on their relative effects on demands and enhanced revenues achieved the most profitable strategy, with an estimated increase in expected annual profits of $2.4 million over the baseline case. Second, utilizing symmetry-breaking constraints in concert with compatible objective perturbation terms greatly enhanced problem solvability and thus promoted the detection of improved solutions, resulting in a $5.8 million increase in estimated annual profits over the baseline case. Third, in the experiment that considers recapture of spilled demand from primary itineraries to other compatible itineraries, the different penalty parameter values (100, 50, and 1 dollars per re-routed passenger) induced average respective proportions of 3.2%, 3.4%, and 3.7% in recaptured demand, resulting in additional estimated annual profits of $3.7 million, $3.8 million, and $4.0 million over the baseline case. Finally, incorporating the proposed valid inequalities within the model to tighten its representation helped reduce the computational effort by 11% on average, while achieving better solutions that yielded on average an increase in estimated annual profits of $1.4 million. In closing, we propose a fourth more comprehensive model in which the crew scheduling problem is additionally integrated with fleet assignment and aircraft routing. This integration is important for airlines because crew costs are the second largest component of airline operating expenses (after fuel costs), and the assignment and routing of aircraft plus the assignment of crews are two closely interacting components of the planning process. Since crews are qualified to typically serve a single aircraft family that is comprised of aircraft types having a common cockpit configuration and crew rating, the aircraft fleeting and routing decisions significantly impact the ensuing assignment of cockpit crews to flights. Therefore it is worthwhile to investigate new models and solution approaches for the integrated fleeting, aircraft routing, and crew scheduling problem, where all of these important inter-dependent processes are handled simultaneously, and where the model can directly accommodate various work rules such as imposing a specified minimum and maximum number of flying hours for crews on any given pairing, and a minimum number of departures at a given crew base for each fleet group. However, given that the crew scheduling problem itself is highly complex because of the restrictive work rules that must be heeded while constructing viable duties and pairings, the formulated integrated model would require further manipulation and enhancements along with the design of sophisticated algorithms to render it solvable. We therefore recommend this study for future research, and we hope that the modeling, analysis, and algorithmic development and implementation work performed in this dissertation will lend methodological insights into achieving further advances along these lines. / Ph. D.
5

Exact Approaches for Higher-Dimensional Orthogonal Packing and Related Problems / Zugänge für die exakte Lösung höherdimensionaler orthogonaler Packungsprobleme und verwandter Aufgaben

Mesyagutov, Marat 24 March 2014 (has links) (PDF)
NP-hard problems of higher-dimensional orthogonal packing are considered. We look closer at their logical structure and show that they can be decomposed into problems of a smaller dimension with a special contiguous structure. This decomposition influences the modeling of the packing process, which results in three new solution approaches. Keeping this decomposition in mind, we model the smaller-dimensional problems in a single position-indexed formulation with non-overlapping inequalities serving as binding constraints. Thus, we come up with a new integer linear programming model, which we subject to polyhedral analysis. Furthermore, we establish general non-overlapping and density inequalities and prove under appropriate assumptions their facet-defining property for the convex hull of the integer solutions. Based on the proposed model and the strong inequalities, we develop a new branch-and-cut algorithm. Being a relaxation of the higher-dimensional problem, each of the smaller-dimensional problems is also relevant for different areas, e.g. for scheduling. To tackle any of these smaller-dimensional problems, we use a Gilmore-Gomory model, which is a Dantzig-Wolfe decomposition of the position-indexed formulation. In order to obtain a contiguous structure for the optimal solution, its basis matrix must have a consecutive 1's property. For construction of such matrices, we develop new branch-and-price algorithms which are distinguished by various strategies for the enumeration of partial solutions. We also prove some characteristics of partial solutions, which tighten the slave problem of column generation. For a nonlinear modeling of the higher-dimensional packing problems, we investigate state-of-the-art constraint programming approaches, modify them, and propose new dichotomy and intersection branching strategies. To tighten the constraint propagation, we introduce new pruning rules. For that, we apply 1D relaxation with intervals and forbidden pairs, an advanced bar relaxation, 2D slice relaxation, and 1D slice-bar relaxation with forbidden pairs. The new rules are based on the relaxation by the smaller-dimensional problems which, in turn, are replaced by a linear programming relaxation of the Gilmore-Gomory model. We conclude with a discussion of implementation issues and numerical studies of all proposed approaches. / Es werden NP-schwere höherdimensionale orthogonale Packungsprobleme betrachtet. Wir untersuchen ihre logische Struktur genauer und zeigen, dass sie sich in Probleme kleinerer Dimension mit einer speziellen Nachbarschaftsstruktur zerlegen lassen. Dies beeinflusst die Modellierung des Packungsprozesses, die ihreseits zu drei neuen Lösungsansätzen führt. Unter Beachtung dieser Zerlegung modellieren wir die Probleme kleinerer Dimension in einer einzigen positionsindizierten Formulierung mit Nichtüberlappungsungleichungen, die als Bindungsbedingungen dienen. Damit entwickeln wir ein neues Modell der ganzzahligen linearen Optimierung und unterziehen dies einer Polyederanalyse. Weiterhin geben wir allgemeine Nichtüberlappungs- und Dichtheitsungleichungen an und beweisen unter geeigneten Annahmen ihre facettendefinierende Eigenschaft für die konvexe Hülle der ganzzahligen Lösungen. Basierend auf dem vorgeschlagenen Modell und den starken Ungleichungen entwickeln wir einen neuen Branch-and-Cut-Algorithmus. Jedes Problem kleinerer Dimension ist eine Relaxation des höherdimensionalen Problems. Darüber hinaus besitzt es Anwendungen in verschiedenen Bereichen, wie zum Beispiel im Scheduling. Für die Behandlung der Probleme kleinerer Dimension setzen wir das Gilmore-Gomory-Modell ein, das eine Dantzig-Wolfe-Dekomposition der positionsindizierten Formulierung ist. Um eine Nachbarschaftsstruktur zu erhalten, muss die Basismatrix der optimalen Lösung die consecutive-1’s-Eigenschaft erfüllen. Für die Konstruktion solcher Matrizen entwickeln wir neue Branch-and-Price-Algorithmen, die sich durch Strategien zur Enumeration von partiellen Lösungen unterscheiden. Wir beweisen auch einige Charakteristiken von partiellen Lösungen, die das Hilfsproblem der Spaltengenerierung verschärfen. Für die nichtlineare Modellierung der höherdimensionalen Packungsprobleme untersuchen wir moderne Ansätze des Constraint Programming, modifizieren diese und schlagen neue Dichotomie- und Überschneidungsstrategien für die Verzweigung vor. Für die Verstärkung der Constraint Propagation stellen wir neue Ablehnungskriterien vor. Wir nutzen dabei 1D Relaxationen mit Intervallen und verbotenen Paaren, erweiterte Streifen-Relaxation, 2D Scheiben-Relaxation und 1D Scheiben-Streifen-Relaxation mit verbotenen Paaren. Alle vorgestellten Kriterien basieren auf Relaxationen durch Probleme kleinerer Dimension, die wir weiter durch die LP-Relaxation des Gilmore-Gomory-Modells abschwächen. Wir schließen mit Umsetzungsfragen und numerischen Experimenten aller vorgeschlagenen Ansätze.
6

Exact Approaches for Higher-Dimensional Orthogonal Packing and Related Problems

Mesyagutov, Marat 12 February 2014 (has links)
NP-hard problems of higher-dimensional orthogonal packing are considered. We look closer at their logical structure and show that they can be decomposed into problems of a smaller dimension with a special contiguous structure. This decomposition influences the modeling of the packing process, which results in three new solution approaches. Keeping this decomposition in mind, we model the smaller-dimensional problems in a single position-indexed formulation with non-overlapping inequalities serving as binding constraints. Thus, we come up with a new integer linear programming model, which we subject to polyhedral analysis. Furthermore, we establish general non-overlapping and density inequalities and prove under appropriate assumptions their facet-defining property for the convex hull of the integer solutions. Based on the proposed model and the strong inequalities, we develop a new branch-and-cut algorithm. Being a relaxation of the higher-dimensional problem, each of the smaller-dimensional problems is also relevant for different areas, e.g. for scheduling. To tackle any of these smaller-dimensional problems, we use a Gilmore-Gomory model, which is a Dantzig-Wolfe decomposition of the position-indexed formulation. In order to obtain a contiguous structure for the optimal solution, its basis matrix must have a consecutive 1's property. For construction of such matrices, we develop new branch-and-price algorithms which are distinguished by various strategies for the enumeration of partial solutions. We also prove some characteristics of partial solutions, which tighten the slave problem of column generation. For a nonlinear modeling of the higher-dimensional packing problems, we investigate state-of-the-art constraint programming approaches, modify them, and propose new dichotomy and intersection branching strategies. To tighten the constraint propagation, we introduce new pruning rules. For that, we apply 1D relaxation with intervals and forbidden pairs, an advanced bar relaxation, 2D slice relaxation, and 1D slice-bar relaxation with forbidden pairs. The new rules are based on the relaxation by the smaller-dimensional problems which, in turn, are replaced by a linear programming relaxation of the Gilmore-Gomory model. We conclude with a discussion of implementation issues and numerical studies of all proposed approaches. / Es werden NP-schwere höherdimensionale orthogonale Packungsprobleme betrachtet. Wir untersuchen ihre logische Struktur genauer und zeigen, dass sie sich in Probleme kleinerer Dimension mit einer speziellen Nachbarschaftsstruktur zerlegen lassen. Dies beeinflusst die Modellierung des Packungsprozesses, die ihreseits zu drei neuen Lösungsansätzen führt. Unter Beachtung dieser Zerlegung modellieren wir die Probleme kleinerer Dimension in einer einzigen positionsindizierten Formulierung mit Nichtüberlappungsungleichungen, die als Bindungsbedingungen dienen. Damit entwickeln wir ein neues Modell der ganzzahligen linearen Optimierung und unterziehen dies einer Polyederanalyse. Weiterhin geben wir allgemeine Nichtüberlappungs- und Dichtheitsungleichungen an und beweisen unter geeigneten Annahmen ihre facettendefinierende Eigenschaft für die konvexe Hülle der ganzzahligen Lösungen. Basierend auf dem vorgeschlagenen Modell und den starken Ungleichungen entwickeln wir einen neuen Branch-and-Cut-Algorithmus. Jedes Problem kleinerer Dimension ist eine Relaxation des höherdimensionalen Problems. Darüber hinaus besitzt es Anwendungen in verschiedenen Bereichen, wie zum Beispiel im Scheduling. Für die Behandlung der Probleme kleinerer Dimension setzen wir das Gilmore-Gomory-Modell ein, das eine Dantzig-Wolfe-Dekomposition der positionsindizierten Formulierung ist. Um eine Nachbarschaftsstruktur zu erhalten, muss die Basismatrix der optimalen Lösung die consecutive-1’s-Eigenschaft erfüllen. Für die Konstruktion solcher Matrizen entwickeln wir neue Branch-and-Price-Algorithmen, die sich durch Strategien zur Enumeration von partiellen Lösungen unterscheiden. Wir beweisen auch einige Charakteristiken von partiellen Lösungen, die das Hilfsproblem der Spaltengenerierung verschärfen. Für die nichtlineare Modellierung der höherdimensionalen Packungsprobleme untersuchen wir moderne Ansätze des Constraint Programming, modifizieren diese und schlagen neue Dichotomie- und Überschneidungsstrategien für die Verzweigung vor. Für die Verstärkung der Constraint Propagation stellen wir neue Ablehnungskriterien vor. Wir nutzen dabei 1D Relaxationen mit Intervallen und verbotenen Paaren, erweiterte Streifen-Relaxation, 2D Scheiben-Relaxation und 1D Scheiben-Streifen-Relaxation mit verbotenen Paaren. Alle vorgestellten Kriterien basieren auf Relaxationen durch Probleme kleinerer Dimension, die wir weiter durch die LP-Relaxation des Gilmore-Gomory-Modells abschwächen. Wir schließen mit Umsetzungsfragen und numerischen Experimenten aller vorgeschlagenen Ansätze.

Page generated in 0.0678 seconds