• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 14
  • 11
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 93
  • 93
  • 22
  • 13
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Modélisation d'interfaces par simulations numériques : des polymères en solutions à la troposphère / computer simulations in modeling interfacial phenomena : from polymer solutions to the tropospher

Darvas, Marias 05 December 2012 (has links)
Ce travail a pour objectif de montrer la capacité des simulations numériques à modéliser les phénomènes aux interfaces solides et liquides. Dans le travail sur les interfaces solides, la méthode GCMC a été utilisée pour simuler l'isotherme d'adsorption de !'acétaldéhyde sur la glace dans les conditions de la haute troposphère, puis l'adsorption de composés organiques bi-fonctionnalisés sur la glace a été caractérisée par dynamique moléculaire avec pour objectif d'interpréter des résl1ltats expérimentaux de la littérature. Une partie de ce travail a été consacrée à la circulation du diagramme de phase (p,T) d'aérosols organiques (acide oxalique et malonique) clans les conditions troposphériques afin d'étudier la capacité de ces aérosols à jouer le rôle de noyaux de condensation pour les particules de glace. Le travail sur les interfaces liquides a concerné tout d'abord l'adsorption compétitive de polymères et de smfactants à la surface de l'eau. Il s'appuie sur une description très précise, par simulation, de la structure et de la dynamique de la surface des systèmes considérés. La deuxième partie des travaux sur les interfaces liquides s'est intéressée à la caractérisation du transfert d'ions à travers une interface liquide/liquide par le biais du calcul des variations de l'énergie libre du système au cours du transfc1i. Afin d'obtenir une description très rigoureuse des détails des processus mis enjeu, une méthode spécifique a été développée dans cette thèse pour calculer le profil d'énergie libre en tenant compte directement du caractère très dynamique de l'interface. / This work aims to demonstrate the ability of numerical simulations to mode] solid · and liquid interfaces. In the work on the solid interfaces, the GCMC method was used to sin:rnlatc the ads011Jtion isotherrn of acetaldehyde on ice under the conditions of the ·upper tropospherc and the molecular dynamics method was usecl to characterize the adsorption of difünctionalized organic compounds on ice, aiming at interpreting experimental results. Part of this work was devotcd to the simulation of the phase diagrarn (p, T) of organic aerosols (oxalic acid and malonic) in tropospberic conditions to study the ability of aerosols to act as condensation nuclei for icc particlcs. The work: on liquid interfaces concerned firstly the competitive adsorption of polymcrs and surfactants at the water surface. It is based on a very precise desc1iption, by mnncrical simulation, of the structure émd dynamics cif the surface of the considered systems. The second pari of the work on liquid interfaces bas focused on the characterization of ion transfer across a liquid/liquid interface through the calculations of the free energy variations of the system during the transfo·. To obtain a rigorous desc1iptio11 of the details of the corresponding processes, a specific method was developed in this thesis to calculate the free energy profile while taking into account tbe dynamics of the interface.
72

NMR diffusion studies of microheterogeneous systems surfactant solutions, polymers solutions and gels /

Nydén, Magnus. January 1998 (has links)
Thesis (doctoral)--Lund University, 1998. / Thesis statement inserted. Includes bibliographical references.
73

Synthesis and reactions of cyclic ketene-N,N-acetals

Ye, Guozhong, January 2008 (has links)
Thesis (Ph.D.)--Mississippi State University. Department of Chemistry. / Title from title screen. Includes bibliographical references.
74

NMR diffusion studies of microheterogeneous systems surfactant solutions, polymers solutions and gels /

Nydén, Magnus. January 1998 (has links)
Thesis (doctoral)--Lund University, 1998. / Thesis statement inserted. Includes bibliographical references.
75

Vapor-liquid Equilibrium of Polymer Solutions During Thermal Decomposition of Rigid Foams

King, Nathan H. 15 July 2008 (has links) (PDF)
Removable Epoxy Foam (REF) and other rigid foams experience severe changes in structure and properties when exposed to high heat. As thermal energy breaks network bonds in the foam many species are formed, including large polymer-like network fragments and smaller solvent-like molecules. During this process a liquid phase may form. The vapor-liquid equilibrium (VLE) behavior of the polymer solutions formed during initial decomposition can be highly non-ideal. In this research VLE behavior of high-temperature polymer solutions was studied and a procedure was developed for predicting that behavior during decomposition of rigid foams. A high-temperature VLE facility was built and validated, and equilibrium pressures were measured at temperatures between 75 and 250ºC for six polymer/solvent systems: two polymers – polyethylene glycol and polystyrene – with each of three solvents – benzene, furan, and 4-isopropylphenol. Calculations from eighteen polymer solution models were compared with experimental results to determine which model best described the VLE behavior. These models included six existing activity coefficient models used alone, as well as in combinations with the Peng-Robinson equation of state (EOS) through the Wong-Sandler mixing rules. Because several of the models required values for polymer volumes, a comparison of the GCVOL and GCMCM group-contribution volume estimation methods was performed. GCMCM was found to give lower overall deviations from literature polymer volume data. The models involving an equation of state required EOS parameter values for the pure polymers. A new method for determining these parameters was proposed. Models using parameters from the new method gave better agreement with equilibrium pressure data than models using parameters from the recommended method in the literature. While agreement with equilibrium pressure data was similar for several models, some models predicted a liquid phase split under certain conditions. Data were not available to verify the presence of two liquid phases, but are needed to make an appropriate recommendation of the best model. If liquid phase splitting does not occur, it is recommended that the UNIFAC-ZM activity coefficient model be used alone. If phase splitting behavior is observed, it is recommended that the UNIFAC-FV activity coefficient model be used in combination with the Peng-Robinson EOS.
76

Miscibility, Viscosity, Density, and Formation of Polymers in High-Pressure Dense Fluids

Liu, Kun 18 January 2008 (has links)
This thesis is an experimental investigation of the phase behavior, volumetric properties, and viscosity of poly (methyl methacrylate) (PMMA), poly (ε-caprolactone) (PCL) and their blends. Homopolymerization and copolymerizations of methyl methacrylate (MMA) and 2-methylene-1,3-dioxepane (MDO) in mixtures of acetone + CO2 have also been explored. The viscosities and densities of acetone + CO2 mixtures were measured in the temperature range 323-398 K at pressures up to 35 MPa. This is the first study in which viscosity of acetone + CO2 mixtures have been measured and the mixtures have been evaluated as solvents for PCL. It is shown that PCL can be readily dissolved in these fluid mixtures at modest pressures even at high carbon dioxide levels. Investigations have been conducted over a temperature range from 323 to 398 K at pressures up to 50 MPa for polymer concentrations up to 20 wt %, and CO2 concentrations up to 60 wt %. It is shown that in these mixtures PCL is dissolved at pressures that are much lower than the pressures reported for miscibility in the mixtures of carbon dioxide with other organic solvents. It is shown that PMMA also readily dissolves at modest pressures. Blends of PMMA and PCL require higher pressures than for the individual polymers for complete miscibility. Free-radical polymerizations of MMA in acetone at 343 K were followed using in-situ measurements of viscosity and density at different pressures from 7- 42 MPa. This is the first time viscosity has been used as a real-time probe of high pressure polymerizations. Two distinct kinetic regimes were identified. Homopolymerizations of MDO were conducted in carbon dioxide at 323 and 343 K at pressures up to 42 MPa. For the first time it is shown that high molecular weight PCL can be produced from MDO in high pressure CO2. Ring-opening free-radical copolymerizations of MDO with MMA, styrene and acrylonitrile were conducted for the first time in carbon dioxide and have been shown to lead to polymers with high molecular weights. / Ph. D.
77

Shear-induced microstructure in hollow fiber membrane dopes

Peterson, Emily Cassidy 13 January 2014 (has links)
Hollow fiber membranes offer the opportunity to dramatically reduce the energy required to perform gas separations in the chemical industry. The membranes are fabricated from highly non-Newtonian precursor materials, including concentrated polymer solutions that sometimes also contain dispersed particles. These materials are susceptible to shear-induced microstructural changes during processing, which can affect the characteristics of the resulting membrane. This thesis explores several shear-related effects using materials and flow conditions that are relevant for fiber spinning. The findings are discussed as they relate to membrane processing, and also from the standpoint of enhancing our fundamental understanding of the underlying phenomena. First, the effect of shear on polymeric dope solutions was investigated. Shear-induced demixing—a phenomenon not previously studied in membrane materials—was found to occur in membrane dopes. Phase separation experiments also showed that shear-induced demixing promotes macrovoid formation. The demixing process was found to depend not only on the instantaneous shear conditions, but also on the shear history of the solution. This suggests that low-shear flow processes that occur in the upstream tubing and channels used for fiber spinning can affect macrovoid formation. The effect of viscoelastic media on dispersed particles was also explored. Shear-small-angle light scattering results showed that particles suspended in membrane dope solutions formed aggregated, vorticity-oriented structures when shear rates in the shear-thinning regime of the polymer solution were applied. Shear rates well below the shear-thinning regime did not produce any structure. In fact, the application of a Newtonian shear rate to a sample already containing the vorticity structure caused the sample to return to isotropy. Measurements using a highly elastic, constant-viscosity Boger fluid showed that strong normal forces alone are not sufficient to form the vorticity structures, but that shear thinning is also required. Lastly, a study was conducted examining cross-stream migration of particles dispersed in viscoelastic media. Fluids exhibiting varying degrees of shear thinning and normal forces were found to have different effects on the particle distribution along the shear gradient axis in Poiseuille flow. Shear thinning was found to promote migration toward the channel center, while normal stresses tended to cause migration toward the channel walls. In addition to hollow fiber spinning, many other industrially relevant applications involve polymer solutions and suspensions of particles in viscoelastic media. Often, the properties and performance of the material depend strongly on the internal microstructure. The results from the research described in this thesis can be used to guide the design of materials and processing conditions, so that the desired microstructural characteristics can be achieved.
78

Untersuchung der Fluoreszenzlebensdauer von BODIPY-Farbstoffen in Polymerlösungen und Polymerschmelzen

Fröbe, Melanie 09 December 2016 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit dem Fluoreszenzverhalten, speziell der Fluoreszenzlebensdauer, von BODIPY-Farbstoffen in Polymerlösungsmittelgemischen mit unterschiedlicher Polymerkonzentration sowie in Polymerfilmen bei unterschiedlichen Temperaturen. Dazu werden zunächst die Synthesen von vier verschiedenen BODIPY-Fluorophoren mit einem Phenylsubstituent in meso-Position aufgezeigt. Dahingehend wurde eine Synthesestrategie entwickelt, um eine einzelne Polypropylenkette an diese Farbstoffsysteme anzubinden. Dabei soll aufgezeigt werden, dass die Länge des Substituenten am Phenylsubstituenten am chromophoren Kern maßgeblich das Fluoreszenzverhalten der Sonde beeinflusst. BODIPY-Farbstoffe mit makromolekularen Substituenten zeigen im Vergleich zu Derivaten mit kürzeren Substituenten eine deutlich größere Fluoreszenzlebensdauer und eine nicht so stark ausgeprägte Temperaturabhängigkeit. Mehrere Zeitkomponenten der Fluoreszenzlebensdauer der Fluorophore in reinem Polypropylen bzw. deren Mehrkomponentensystemen (Polyethylenpropylen Copolymer oder Kraton) im Vergleich zu reinen Lösungsmitteln (Toluol oder Dodecen) deuten dabei auf lokale Heterogenitäten im Material hin. Außerdem wird der Einfluss der Viskosität auf die Fluoreszenzlebensdauer in Polymer/Lösungsmittelgemischen mit unterschiedlicher Polymerkonzentration untersucht und die Rolle des Wasserstoffbrückennetzwerkes zwischen den Polymer- und Lösungsmittelmolekülen diskutiert.
79

Studies In Stability Of Newtonian And Viscoelastic Fluid Flow Past Rigid And Flexible Surfaces

Chokshi, Paresh P 12 1900 (has links)
The surface oscillations in a deformable wall are known to induce an instability in the adjacent flow even in the absence of inertia. This instability, if understood properly, can be exploited to generate a well-mixed flow pattern with improved transport coefficients in microfluidic systems, wherein the benefits of inertial instabilities can not be realised. In order to utilise the wall deformability in micro-devices as well as other biotechnological applications, the quantitative knowledge of the critical parameter for the on-set of instability and the nature of bifurcation in the region of transition point are essential. With this objective, a major portion of this thesis deals with the stability analysis of flow past a flexible surface. For Newtonian flow over a deformable solid medium, the analyses of hydrodynamic stability in two flow regimes are presented: the viscous mode instability in the limit of zero Reynolds number, and the wall mode instability in the limit of high Reynolds number. The flexible solid in both analyses is described as a neo-Hookean solid continuum of finite thickness. The previous work on viscous instability using the same solid model ignored the viscous dissipation in the solid. In the present study, a purely elastic neo-Hookean model is augmented to incorporate the viscous stresses accounting for the dissipative mechanism in an aqueous gel-like solid medium. The linear stability analysis for this neo-Hookean viscoelastic solid shows a dramatic influence of solid viscosity on the stability behaviour. The important parameter here is where ηr is the solid viscosity relative to the fluid viscosity and H is the solid-to-fluid thickness ratio. While the effect solid viscosity is stabilizing for a further increase in viscosity in the regime reduces the critical shear rate for transition, indicating a destabilizing influence of solid viscosity. The weakly nonlinear analysis indicates that the bifurcation is subcritical for most values of H when ηr =0. However, for non-zero solid viscosity, the analysis reveals a range of ηr for which the nature of bifurcation is supercritical. The results are in contrast to the behaviour for the Hookean (linear) elastic solid, for which the effect of solid viscosity is always stabilising and the bifurcation is subcritical for all values of H and ηr. For the wall mode instability, critical parameters for the linear and the neo-Hookean elastic solid are found to be very close. The weakly nonlinear analysis of the wall mode instability shows that the instability is driven to a supercritically stable branch, indicating the possibility of a stable complex flow pattern which is ) correction to the base flow. The amplitude of the supercritically bifurcated equilibrium state, A1e, is derived in the vicinity of the critical point, and its scaling with the flow Reynolds number is obtained. The nonlinear analysis is also carried out using the asymptotic analysis in small parameter Re−1/3. The asymptotic results are found to be in good agreement with the numerical solutions for For a polymeric flow over a deformable solid medium, the viscous instability is analysed by extending the viscous mode for the Newtonian fluid to the fluid with finite elasticity. The viscoelastic fluid is described by an Oldroyd-B model which introduces two additional parameters: the Weissenberg number, W , and β, the ratio of solvent-to-solution viscosity. The polymer viscosity parameter β is an indirect measure of polymer concentration with the extreme cases of β =1 representing the Newtonian fluid and β =0the upper convected Maxwell fluid. The analysis considers both the linearly elastic and the neo-Hookean models to describe the deformable solid. The analysis reveals the presence of two classes of modes: the finite wavelength modes and the shortwave modes. The behaviour of the finite wavelength modes is similar for both the models of solid medium. The effect of increasing fluid Weissenberg number and also increasing polymer concentration (achieved by reducing β below 1) on the finite wavelength instability is stabilising. The viscous instability ceases to exist for W larger than a certain maximum value Wmax. The behaviour of the shortwave mode is remarkably different for both the models of solid. Using the shortwave asymptotic, the differences are elucidated and it is shown that the shortwave instabilities in both the models are qualitatively different modes. For a linear elastic solid model, the shortwave mode is attributed to the normal-stresses in polymeric fluid with high Weissenberg number. This mode does not exist for the Newtonian flow and is a downstream travelling disturbance wave. On the other hand, the shortwave mode for the neo-Hookean model is attributed to the normal-stress difference in the elastic solid. Hence, this mode does exist for the Newtonian fluid and is an upstream travelling disturbance wave. The role of polymer concentration in the criticality of finite wavelength and shortwave modes is examined for a wide range of Weissenberg number. The results are condensed in a map showing the stability boundaries in parametric space covering β, W and H. The weakly nonlinear analysis reveals that the bifurcation of linear instability is subcritical when there is no dissipation in the solid. The nature of bifurcation, however, changes to supercritical when the viscous effects in the solid are taken into account. The final problem of this thesis deals with the flow past a rigid surface. Here, the stability of base profile in a plane Couette flow of dilute polymeric fluid is studied at moderate Reynolds number. Three variants of Oldroyd-B model have been analysed, viz. the classical Oldroyd-B model, the diffusive Oldroyd-B model, and the non-homogeneous Oldroyd-B model. The Newtonian wall modes are modified marginally for the polymeric fluid described by the classical Oldroyd-B model. The Oldroyd-B model with artificial diffusivity introduces the additional ‘diffusive modes’ which scale with P´eclet number. The diffusive modes become the slowest decaying modes, in comparison to the wall modes, for large wavenumber disturbances. For these two models, the polymeric flow is linearly stable. Using the equilibrium flow method, wherein the nonlinear flow is assumed to be at the transition point, the finite amplitude disturbances are analysed, and the threshold energy necessary for subcritical transition is estimated. The third variant of Oldroyd-B model accounts for non-homogeneous polymer concentration coupled with the stress field. This model exhibits an instability in the linear analysis. The ‘concentration mode’ becomes unstable when the fluid Weissenberg number exceeds a certain transition value. This instability is driven by the stress-induced fluctuations in polymer number density.
80

Specific interactions in carbon dioxide + polymer systems

Kasturirangan, Anupama 04 January 2008 (has links)
Specific Interactions in Carbon Dioxide + Polymer Systems Anupama Kasturirangan 163 Pages Directed by Dr. Amyn S. Teja Weak complex formation in CO2 + polymer and CO2 + copolymer systems containing C=O and C-F groups was quantified using in situ FTIR spectroscopy. The enthalpy of interaction thus obtained was directly incorporated into a lattice model and compressibility effects were accounted for via ratio of free volumes in modified segment number. CO2 + fluropolymer phase behavior could be correlated within experimental error (AAD of about 2%) using the new model, a task that has been beyond the capability of published models and it was also possible to predict phase equilibria of CO2 + PLGA copolymer systems with a single parameter obtained by fitting cloud point behavior in a reference system (CO2 + PLA in this case).New data on sorption equilibria in several CO2 + PLGA systems were obtained using a quartz crystal microbalance (QCM) and new data on Tg depression in the CO2 + PLA system were also obtained using a high pressure DSC method and used to demonstarte that model parameters are valid over extended pressure ranges. The new compressible lattice model developed is thus able to correlate cloud points, sorption equilibria, glass transition temperatures, and melting points using a single parameter. The model is therefore likely to be beneficial in many applications involving CO2 + polymer systems including drug delivery and encapsulation, polymer coating, and membranes for natural gas separations.

Page generated in 0.0792 seconds