• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 18
  • 10
  • 9
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 163
  • 163
  • 86
  • 67
  • 67
  • 36
  • 32
  • 30
  • 30
  • 29
  • 28
  • 26
  • 25
  • 25
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A study on nonhumidified fuel cells using fluorohydrogenate ionic liquids / フルオロハイドロジェネートイオン液体を用いた無加湿燃料電池に関する研究

KIATKITTIKUL, PISIT 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(エネルギー科学) / 甲第19090号 / エネ博第314号 / 新制||エネ||64(附属図書館) / 32041 / 京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻 / (主査)教授 萩原 理加, 教授 佐川 尚, 教授 野平 俊之 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM
22

POLYMER ELECTROLYTES FOR HIGH CURRENT DENSITY LITHIUM STRIPPING/PLATING TEST

Zhang, Yuhan 24 June 2019 (has links)
No description available.
23

Interactions and Morphology of Triblock Copolymer - Ionic Liquid Mixtures and Applications for Gel Polymer Electrolytes

Miranda, Daniel F. 01 September 2012 (has links)
Room temperature ionic liquids (ILs) are a unique class of solvents which are characterized by non-volatility, non-flammability, electrochemical stability and high ionic conductivity. These properties are highly desirable for ion-conducting electrolytes, and much work has focused on realizing their application in practical devices. In addition, hydrophilic and ionophilic polymers are generally miscible with ILs. The miscibility of ILs with ion-coordinating polymers makes ILs effective plasticizers for gel polymer electrolytes. Due to their unique properties, ILs present a means to realize the next generation of energy storage technology. In this dissertation, the fundamental interactions between poly(ethylene oxide) (PEO) and a variety of room temperature ILs were investigated. ILs with acidic protons were demonstrated to form a stronger interaction with PEO than ILs without such protons, suggesting that hydrogen bonding plays a dominant role for PEO miscibility with ILs. The hydrogen bonding interaction is selective for the PEO block of a PEO-b-PPO-b-PEO block copolymer (BCP). Therefore, blending these copolymers with the strongly interacting IL 1-butyl-3-methylimidazolium hexafluorophosphate ([BMI][PF6]) induced microphase separation into a well-ordered structure, whereas the neat copolymer is phase mixed. At sufficient quantities, the interaction between [BMI][PF6] and PEO suppresses PEO crystallinity entirely. In addition, the induced microphase separation may prove beneficial for ion conduction. Therefore, microphase separated copolymer/IL blends were investigated as potential gel polymer electrolytes. Cross-linkable block copolymers which microphase separate when blended with [BMI][PF6] were synthesized by modifying PPO-b-PEO-b-PPO copolymers with methacrylate end-groups. Cross-linking these copolymers while swollen with an IL generates ion gels with high ionic conductivities. The copolymer/IL blends vary from a well-ordered, strongly microphase separated state to a poorly ordered and weakly microphase separated state, depending upon the molecular weight. Stronger microphase separation results in higher mechanical strength upon cross-linking. However, this does not greatly affect ion conductivity. Nor is conductivity affected by forming gels from cross-linked PEO homopolymers when compared to BCPs. It was found that BCPs can be beneficial in producing gel electrolytes by allowing sequestration of phase selective cross-linkers away from the conducting block. Cross-linker molecules that are selective for the PPO blocks can be used to increase the mechanical strength of the gels with only a small effect on the conductivity. When cross-linkers that partition to the mixed PEO/IL block are used, the conductivity decreases by nearly a factor of 2. These studies show how ILs interact with PEO and how gel polymer electrolytes can be constructed with the IL [BMI][PF6]. While BCPs cannot directly be used to increase ion conductivity, they do allow for greater mechanical strength without sacrificing conductivity. This suggests many new approaches that may be used to simultaneously achieve high ionic conductivity and mechanical strength in solid and gel polymer electrolytes.
24

Development of a solid polymer electrolyte sensor for transcutaneous oxygen monitoring

Peng, Wei January 1993 (has links)
No description available.
25

Highly electrochemical stable quaternary solid polymer electrolyte for all-solid-state lithium metal batteries

Shao, Yunfan 08 June 2018 (has links)
No description available.
26

Investigation of Nitrogen-Doped Biomass as a Catalyst Support for Polymer Electrolyte Membrane Fuel Cells

Ackerman, Andrew Michael January 2018 (has links)
No description available.
27

Characterization of Electrically Controlled Gel Polymer Electrolyte Monopropellants

Autry, Harrison Ryan 04 May 2023 (has links)
Increasing interest in the development of nontoxic monopropellants for the replacement of hydrazine and its derivatives stems from the desire for safer and thus more cost-effective alternatives. Ionic liquid monopropellants based on the hydroxylammonium nitrate and ammonium dinitramide ionic oxidizer salts have received the majority of attention over the last two decades and present a promising alternative with higher performance and more attractive handling qualities than hydrazine. These monopropellants are employed using catalytic methods which lead to their decomposition and ignition. However, the development of compatible catalysts remains a limiting step in the technological readiness of these alternative monopropellants. Due to their ionic nature, the development of ionic liquid monopropellants has led to many investigations on the utilization of electrolysis to achieve combustion. Separately, there has been a longtime interest in the use of gelled propellants for enhanced handling and operating safety. Atomization and combustion inefficiencies associated with gels have continued to limit their use. Monopropellants composed of gel polymer electrolytes present a unique opportunity which combines the safety features of gelled propellants as well as the ionic conductivity seen in ionic liquids, allowing them to decompose and ignite electrolytically. In this research, a family of electrically controlled monopropellants that utilize electrolysis in this fashion was developed from a gel polymer electrolyte. Their fundamental properties, including those pertaining to rheology, conductivity, thermal stability, and combustion, are explored as the composition of the oxidizer salt is varied. / Master of Science / Current advancements in rocket propulsion include interests in developing alternative green propellants for use in spacecraft propulsion systems with the hope of replacing current options which may be toxic to handle and present a serious safety hazard. Alternative propellants are generally thought of as not requiring special safety equipment or protocols in their handling, thereby reducing costs. Several promising options belonging to a category of propellants known as ionic liquids have made significant progress in development since the 1990s and have the potential to be used alongside a novel electrical combustion method known as electrolysis. Gelled propellants are another possible alternative which have been researched for their appealing safety qualities for some time. While not researched for their use as rocket propellants until very recently, gel polymer electrolytes have received interest in this application due to their composition which includes a polymer, commonly used as rocket fuel, and an oxidizer salt. Due to their inherent electrical conductivity, their potential to use electrolysis in a similar manner to ionic liquids to achieve combustion is of interest. The research detailed in this thesis was completed to characterize fundamental material and combustion properties of a gel polymer electrolyte propellant as its oxidizer constituents are varied.
28

System Level Modeling of Thermal Transients in PEMFC Systems

Shevock, Bryan Wesley 06 February 2008 (has links)
Fuel cell system models are key tools for automotive fuel cell system engineers to properly size components to meet design parameters without compromising efficiency by over-sizing parasitic components. A transient fuel cell system level model is being developed that includes a simplified transient thermal and parasitics model. Model validation is achieved using a small 1.2 kW fuel cell system, due to its availability. While this is a relatively small stack compared to a full size automotive stack, the power, general thermal behavior, and compressor parasitics portions of the model can be scaled to any number of cells with any size membrane area. With flexibility in membrane size and cell numbers, this model can be easily scaled to match full automotive stacks of any size. The electrical model employs a generalized polarization curve to approximate system performance and efficiency parameters needed for the other components of the model. General parameters of a stack's individual cells must be known to scale the stack model. These parameters are usually known by the time system level design begins. The thermal model relies on a lumped capacity approximation of an individual cell system with convective cooling. From the thermal parameters calculated by the model, a designer can effectively size thermal components to remove stack thermal loads. The transient thermal model was found to match experimental data well. The steady state and transient sections of the curve have good agreement during warm up and cool down cycles. In all, the model provides a useful tool for system level engineers in the early stages of stack system development. The flexibility of this model will be critical for providing engineers with the ability to look at possible solutions for their fuel cell power requirements. / Master of Science
29

Materials for future power sources

Ludvigsson, Mikael January 2000 (has links)
<p>Proton exchange membrane fuel cells and lithium polymer batteries are important as future power sources in electronic devices, vehicles and stationary applications. The development of these power sources involves finding and characterising materials that are well suited r the application.</p><p>The materials investigated in this thesis are the perfluorosulphonic ionomer Nafion<sup>TM </sup>(DuPont) and metal oxides incorporated into the membrane form of this material. The ionomer is used as polymer electrolyte in proton exchange membrane fuel cells (PEMFC) and the metal oxides are used as cathode materials in lithium polymer batters (LPB).</p><p>Crystallinity in cast Nafion films can be introduced by ion beam exposure or aging. Spectroscopic investigations of the crystallinity of the ionomer indicate that the crystalline regions contain less water than amorphous regions and this could in part explain the drying out of the polymer electrolyte membrane in a PEMFC.</p><p>Spectroscopic results on the equilibrated water uptake and the state of water in thin cast ionomer films indicate that there is a full proton transfer from the sulphonic acid group in the ionomer when there is one water molecule per sulphonate group.</p><p>The LPB cathode materials, lithium manganese oxide and lithium cobalt oxide, were incorporated <i>in situ</i> in Nafion membranes. Other manganese oxides and cobalt oxides were incorporated <i>in situ</i> inside the membrane. Ion-exchange experiments from HcoO<sub>2 </sub>to LiCoO<sub>2 </sub>within the membrane were also successful.</p><p>Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction were used for the characterisation of the incorporated species and the Nafion film/membrane.</p>
30

Materials for future power sources

Ludvigsson, Mikael January 2000 (has links)
Proton exchange membrane fuel cells and lithium polymer batteries are important as future power sources in electronic devices, vehicles and stationary applications. The development of these power sources involves finding and characterising materials that are well suited r the application. The materials investigated in this thesis are the perfluorosulphonic ionomer NafionTM (DuPont) and metal oxides incorporated into the membrane form of this material. The ionomer is used as polymer electrolyte in proton exchange membrane fuel cells (PEMFC) and the metal oxides are used as cathode materials in lithium polymer batters (LPB). Crystallinity in cast Nafion films can be introduced by ion beam exposure or aging. Spectroscopic investigations of the crystallinity of the ionomer indicate that the crystalline regions contain less water than amorphous regions and this could in part explain the drying out of the polymer electrolyte membrane in a PEMFC. Spectroscopic results on the equilibrated water uptake and the state of water in thin cast ionomer films indicate that there is a full proton transfer from the sulphonic acid group in the ionomer when there is one water molecule per sulphonate group. The LPB cathode materials, lithium manganese oxide and lithium cobalt oxide, were incorporated in situ in Nafion membranes. Other manganese oxides and cobalt oxides were incorporated in situ inside the membrane. Ion-exchange experiments from HcoO2 to LiCoO2 within the membrane were also successful. Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction were used for the characterisation of the incorporated species and the Nafion film/membrane.

Page generated in 0.2214 seconds