• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Active, polymer-based composite material implementing simple shear

Lee, Sang Jin 15 May 2009 (has links)
A novel active material for controllable, high work density applications was designed, fabricated, analyzed, and tested. This active material uses a lens-shaped element to implement simple shear motion with gas pressure actuation. The lens element is a bladder-filled Kevlar fabric embedded in a polyurethane matrix. The polyurethane’s hyperelastic material parameters were found by experiment and estimated by numerical analysis. The Ogden material constant set found shows good agreement within the shear actuator’s working range. A fabricated, single-element shear actuator reached 34.2% free shear strain when pressurized to 1.03 MPa. A unitary shear actuator was modeled as were single-acting and dual-acting shear actuator arrays so that solitary and multi-cell behaviors were estimated. Actuator work performance and power from nonlinear finite element analysis found conventional work density is 0.2289 MJ/m3 and 0.2482 MJ/m3, for the singleacting and double-acting shear actuator, respectively. Scientific work densities are 0.0758 MJ/m3 and 0.0375 MJ/m3, for single-acting and double-acting shear actuators, respectively. Calculation shows the volumetric power for a single-acting shear actuator is 0.4578 MW/m3 and 0.4964 MW/m3 for the double-acting shear actuator. Finally, a nastic actuator is applied to twist a generic structural beam. The nasticmaterial actuated structure has an advantage over conventional actuator systems. Work per unit volume for nastic materials is 2280~8471% higher than conventional, discrete actuators that use electric motors. When compared by work per unit mass, this nastic actuator is 2592~13900% better than conventional actuator because nastic actuator is made from lighter materials and it distributes the actuation throughout the structure, which eliminates connecting components. The nastic actuator’s volumetric power is 2217~8602% higher than conventional actuators. Finally, the nastic actuator is 2656~14269% higher than conventional actuators for power per unit mass.
2

Development of a low-cost in-situ material characterization method and experimental studies of smart composite structures / Développement d'une méthode de caractérisation de matériaux in situ à faible coût et études expérimentales de structures composites intelligentes

Chen, Xianlong 12 March 2019 (has links)
Les structures composites intégrant des transducteurs piézoélectriques au cœur de la matière sont utilisées pour leur capacité à modifier leurs propriétés mécaniques en fonction de l’environnement, à contrôler leur intégrité structurale et à interagir avec l’homme ou avec d’autres structures.Ce travail se concentre sur les phases de conception préliminaire des structures composites intelligentes. Ces phases ne représentent que 5% du coût total d’un projet, mais conditionnent 80% du coût final du produit. Les principaux problèmes rencontrés lors de ces phases de conception préliminaire portent sur la détermination des propriétés matériau des transducteurs piézoélectriques et des matériaux composites utilisés, de l'influence de l'emplacement des transducteurs dans la structure ainsi que de l’influence du processus de fabrication, de la température et des endommagements sur le comportement final des structures composites intelligentes.Dans le processus de fabrication développé à l’Université de Technologies Belfort-Montbéliard (UTBM), l’élément-clé est un produit semi-fini appelé “soft layer”. Cette couche permet d’intégrer le réseau de transducteurs piézoélectriques au cœur de la structure composite. Le processus de fabrication de la “soft layer” ainsi que celui des structures intelligentes sont abordés dans cette thèse.Afin de trouver des solutions aux problèmes décrits ci-dessus, deux méthodes de caractérisation de composites intelligents ou adaptatifs sont présentées et utilisées : la méthode dite Resonalyser et la méthode du temps de vol. Après des études expérimentales et une comparaison des résultats obtenus, la méthode du temps de vol a été choisie comme méthode principale en raison de son faible coût de mise en œuvre et du fait qu’il s’agit d’une méthode de caractérisation in-situ. De plus, une nouvelle méthode appelée méthode CMB, basée sur la méthode du temps de vol a été développée afin de pouvoir facilement et rapidement extraire les constantes élastiques, en particulier le coefficient de Poisson.Des analyses expérimentales de sensibilité appliquées aux composites adaptatifs ont été effectuées.Premièrement, l’étude de l’influence de l’emplacement des transducteurs démontre qu’il est nécessaire de tenir compte de la position de la “soft layer” dans la modélisation du comportement de produit final. La position de cette couche dans l’épaisseur du produit a une influence notable sur les fréquences propres ainsi que les amplitudes modales de la structure. Cependant, l’ajout de la “soft layer” n’accroît pas le taux d’amortissement de la structure finale; et sa position dans l’épaisseur n’a aucune influence sur ce taux d’amortissement. La propagation des ondes de Lamb à l’intérieur du composite n’est pas impactée par le “soft layer”.Deuxièmement, l’étude de l’impact du processus de la fabrication nous renseigne sur l’influence notable des divers paramètres de réglage du processus de fabrication sur le comportement final de la structure composite intelligente.Troisièmement, l’étude de l’influence de la température sur des structures constituées de différents matériaux composites montre que le module de Young du produit final décroît quand la température augmente. Mais la diminution du module de Young en fonction de la température est différente selon les et les types de matériaux et les directions des fibres, en particulier pour les structures composites unidirectionnelles. De plus, cette étude montre également la sensibilité de la méthode du temps de vol vis-à-vis de la température. Ce dernier point est par ailleurs consolidé par la comparaison avec des résultats obtenus par une méthode de caractérisation ex-situ standard : l'analyse dynamique de la mécanique (DMA).Enfin, l'étude de l'impact des dommages mécaniques fournit une assez bonne référence pour les recherches futures. De cette façon, il est clair qu’une méthode de temps de vol peut être utilisée dans la surveillance de la santé structurale. / The composite structures embedding piezoelectric implants are developed due to their abilities of modifying mechanical properties according to the environment, of keeping their integrity, of interacting with human beings or with other structures.This study is focused on the preliminary design stages of smart composite structures, which represent only 5% of the total costs of a project, whereas 80% of the life cycle cost are set during the preliminary study phases. The top few problems during the preliminary design of smart composite structures are addressed in this work such as the determination of the material properties of the piezoelectric transducers and composite material used, the influence of transducers location, manufacturing process, temperature and damage on the behavior of the smart composite structures.Due to the manufacturing process developed at the Université de Technologie de Belfort-Montbéliard (UTBM), the most important element is a semi-finished product called “soft layer”. This special layer is used to embed the transducers system into the composite structures. The manufacturing process of “soft layer” as well as the smart composite structures are compiled in this report.In order to solve the problems described above, two characterization methods of composite material (Resonalyser method and Time-of-Flight method (T-o-F method)), are introduced and discussed. After experimental studies and comparing the results of these two methods, the T-o-F method is chosen as the main method for the following studies due to the fact that it is a low-cost and in-situ characterization method. Furthermore, a new method based on the T-o-F method is developed to easily and quickly extract the elastic constants, in particular the Poisson’s ratio.Experimental sensitivity analyses applied to the smart composite structures are performed with respect to the problems describes above. First of all, the study of the influence of transducers location demonstrates that the "soft layer” cannot be neglected to model the behavior of the final product. In particular, the through-the-thickness position has an influence on the eigenfrequencies and the modal amplitudes. However, the "soft layer” does not increase the overall damping ratio of the final structures and the through-the-thickness position of the "soft layer” has no influence on the damping ratios. The Lamb wave propagation inside the composite material is not impacted by the "soft layer”. Secondly, the study of the impact of manufacturing process demonstrates that the impact of variability of parameters due to the manufacturing process is very important on the final response of the structure. Thirdly, the study of the influence of temperature on different kinds of smart composite structures proves that when temperature increases, the Young’s modulus of the smart composites decreases. But the attenuation of Young’s modulus according to temperature is different along different fiber directions, especially for the unidirectional composite structures. Furthermore, in this study, the sensitivity of Time-of-Flight method with respect to temperature is well proved by comparing the results with a traditional method like Dynamic-Mechanical Analysis (DMA). Last but not least, the study of the impact of the mechanical damage gives a quite good reference for the future investigations. Along this way, it is possible to use a Time-of-Flight method in Structural Health Monitoring. In addition, some smart composite structures manufactured by the research team are given and their potential applications are discussed.
3

Simulation of interlaminar and intralaminar damage in polymer-based composites for aeronautical applications under impact loading

González Juan, Emilio Vicente 08 March 2011 (has links)
La aplicación de materiales compuestos de matriz polimérica reforzados mediante fibras largas (FRP, Fiber Reinforced Plastic), está en gradual crecimiento debido a las buenas propiedades específicas y a la flexibilidad en el diseño. Uno de los mayores consumidores es la industria aeroespacial, dado que la aplicación de estos materiales tiene claros beneficios económicos y medioambientales. Cuando los materiales compuestos se aplican en componentes estructurales, se inicia un programa de diseño donde se combinan ensayos reales y técnicas de análisis. El desarrollo de herramientas de análisis fiables que permiten comprender el comportamiento mecánico de la estructura, así como reemplazar muchos, pero no todos, los ensayos reales, es de claro interés. Susceptibilidad al daño debido a cargas de impacto fuera del plano es uno de los aspectos de más importancia que se tienen en cuenta durante el proceso de diseño de estructuras de material compuesto. La falta de conocimiento de los efectos del impacto en estas estructuras es un factor que limita el uso de estos materiales. Por lo tanto, el desarrollo de modelos de ensayo virtual mecánico para analizar la resistencia a impacto de una estructura es de gran interés, pero aún más, la predicción de la resistencia residual después del impacto. En este sentido, el presente trabajo abarca un amplio rango de análisis de eventos de impacto a baja velocidad en placas laminadas de material compuesto, monolíticas, planas, rectangulares, y con secuencias de apilamiento convencionales. Teniendo en cuenta que el principal objetivo del presente trabajo es la predicción de la resistencia residual a compresión, diferentes tareas se llevan a cabo para favorecer el adecuado análisis del problema. Los temas que se desarrollan son: la descripción analítica del impacto, el diseño y la realización de un plan de ensayos experimentales, la formulación e implementación de modelos constitutivos para la descripción del comportamiento del material, y el desarrollo de ensayos virtuales basados en modelos de elementos finitos en los que se usan los modelos constitutivos implementados. / The application of polymer-based composites reinforced by long fibers, called advanced Fiber Reinforced Plastic (FRP), is gradually increasing as a result of their good specific mechanical properties and increased flexibility of design. One of the largest consumers is the aerospace industry, since the application of these materials has clear economic and environmental benefits. When composites are to be used in structural components, a design development program is initiated, where a combination of testing and analysis techniques is typically performed. The development of reliable analysis tools that enable to understand the structure mechanical behavior, as well as to replace most, but not all, the real experimental tests, is of clear interest. Susceptibility to damage from concentrated out-of-plane impact forces is one of the major design concerns of structures made of advanced FRPs used in the aerospace industry. Lack of knowledge of the impact effects on these structures is a factor in limiting the use of composite materials. Therefore, the development of virtual mechanical testing models to analyze the impact damage resistance of a structure is of great interest, but even more, the prediction of the post-impact residual strength. In this sense, the present thesis covers a wide range of analysis of the low-velocity and large mass impact events on monolithic, flat, rectangular, polymer-based laminated composite plates with conventional stacking sequences. Keeping in mind that the main goal of this work is the prediction of the residual compressive strength of an impacted specimen coupon, a set of different tasks are performed in order to provide suitable tools to analyze the problem. Accordingly, the topics which are addressed in this thesis are: the analytical description of the impact, the design and the realization of an experimental test plan, the formulation and implementation of constitutive models for the description of the composite material behavior, and the assessment of the performance of virtual tests based on finite element models where the constitutive models are used.
4

Caractérisation non linéaire de l'endommagement des matériaux composites par ondes guidées / Nonlinear characterization of damaged composite plates using guided waves

Baccouche, Yousra 30 April 2013 (has links)
La sensibilité des méthodes acoustiques non-linéaires à la présence ainsi qu’à l’évolution des microendommagements a été prouvée dans différents travaux sur une large gamme de matériaux. Parmi les méthodes appliquées figure la résonance non-linéaire dont la sensibilité à l’endommagement est prouvée pour un seul mode de vibration à travers la décroissance de la fréquence de résonance ƒ et celle facteur de qualité Q en fonction de la déformation dynamique. Ainsi, les paramètres non-linéaires hystérétiques (NLH) ƒ et Q ne sont connus que dans une gamme fréquentielle réduite. Le présent travail de thèse propose l’utilisation d’une approche originale permettant de suivre la dispersion des paramètres ƒ et Q à travers la génération d’ondes guidées dans des plaques en composites à matrices polymère et métallique. De plus, l’approche en ondes guidées a également permis de définir un nouveau paramètre NLH V liée au mode de Lamb A0. L’un des résultats originaux de ce travail est que le rapport V/ƒ s’avère constant (~ 2) quelle que soit la fréquence considérée et ce pour les deux types de composites. Ce résultat prometteur montre pour la première fois qu’il est possible de généraliser le comportement NLH dans les structures en plaques moyennant le formalisme de Lamb. Finalement, le travail de thèse s’est également intéressé à la définition d’un nouveau paramètre NLH large bande, noté ∆S, afin de suivre la sensibilité du spectre de vibration à l’endommagement. Les mesures ont montré que ∆S pouvait se distinguer de par une réponse pouvant être nonlinéaire dès les premiers niveaux d’excitation ou à partir d’un niveau seuil. Ce résultat très prometteur montre à quel point il est important d’élargir le domaine fréquentiel pour une détection précoce de l’endommagement et ce même à des niveaux d’excitation où l’on croyait le matériau se comporter de façon linéaire. / Sensitivity of non-linear acoustics techniques to the presence and evolution of micro-damage has been proven on a large scale of materials. In particular, different works showed the use of the nonlinear resonance as a reliable method to characterise damage in heterogeneous materials through the drop of the resonance frequency ƒ and the quality factor Q as a function of the dynamic strain. Therefore, nonlinear hysteretic parameters (NLH) ƒ and Q have only been determined in a narrow frequency band. The present work develops an original approach, which allows to follow the frequency dispersion of ƒ and Q by using guided waves propagating in polymer and metal based composite plates. Furthermore, the guided wave approach made possible the definition of a new NLH parameter V through the A0 Lamb mode. One of the original results is that the ratio V/ƒ remains constant for both materials (~2) despite the considered frequency. This encouraging result allows for the first time to show that it is possible to generalise the NLH behaviour in the case of a plate-like structures using the Lamb formalism. Finally, this present PhD thesis defines a new large frequency band NLH parameter ∆S in order to follow the sensitivity of the vibration spectrum to the present damage. The performed experiments have shown that ∆S can be nonlinear either at the very first excitation levels or at a given threshold. This encouraging experimental result shows that there is a real interest in broadening the frequency domain in order to better understand the changes that occur in heterogeneous materials when the dynamic strain is increased.

Page generated in 0.1533 seconds