Spelling suggestions: "subject:"polynôme dde lutte"" "subject:"polynôme dde tutte""
1 |
Combinatoire des algèbres de Hopf basées sur le principe sélection/quotient / Combinatorial Hopf algebras based on the selection/quotient ruleHoàng, Nghia Nguyên 23 September 2014 (has links)
Dans cette thèse, nous nous concentrons sur l’étude des algèbres de Hopf de type I, à savoir de type sélection/quotient. Nous présentons une structure d’algèbre de Hopf sur l’espace vectoriel engendré par les mots tassés avec du coproduit sélection/quotient. C’est un algèbre libre sur ses mots irreductible. Nous montrons que la série de Hilbert de cette algèbre de Hopf. Nous donnons une nouvelle preuve de l’universalité du polynôme de Tutte pour les matroïdes.Cette preuve utilise des caractères appropriés de l’algèbre de Hopf des matroïdes introduite par Schmitt (1994). Nous montrons que ces caractères sont des solutions des équations différentielles du même type que les équations différentielles utilisées pour décrire le flux du groupe de renormalisation en théorie quantique de champs. Cette approche nous permet aussi de démontrer,d’une manière différente, une formule de convolution du polynôme de Tutte des matroïdes,formule publiée par Kook, Reiner et Stanton (1999) et par Etienne et Las Vergnas (1998). Dans la dernière partie, nous définissons une algèbre de Hopf non-commutative de graphes. Lanon-commutativité du produit est obtenue grâce à des étiquettes entières distinctes associées aux arrêtes du graphe. Cette idée est inspirée de certaines techniques analytiques utilisées en renormalisation en théories quantiques des champs. Nous définissons ensuite une structure d’algèbre de Hopf, avec un coproduit basé sur une règle de type sélection/quotient, et nous démontrons la coassociativité de ce coproduit. Nous analysons finalement la structure de quadri-cogèbre et les structures codendriformes associées. / In this thesis, we focus on the study of Hopf algebras of type I, namely the selection/quotient.We study the new Hopf algebra structure on the vector space spanned by packed words. Weshow that this algebra is free on its irreducible packed words. We also compute the Hilbertseries of this Hopf algebra.We provide a new way to obtain the universality of the Tutte polynomial for matroids. Thisproof uses appropriate characters of Hopf algebra of matroids, algebra introduced by Schmitt(1994). We show that these Hopf algebra characters are solutions of some differential equationswhich are of the same type as the differential equations used to describe the renormalizationgroup flow in quantum field theory. This approach allows us to also prove, in a different way, amatroid Tutte polynomial convolution formula published by Kook, Reiner and Stanton (1999)and by Etienne and Las Vergnas (1998).We define a non-commutative Hopf algebra of graphs. The non-commutativity of the productis obtained thanks to some discrete labels associated to the graph edges. This idea is inspiredfrom certain analytic techniques used in quantum field theory renormalization. We then definea Hopf algebra structure, with a coproduct based on a selection/quotient rule, and prove thecoassociativity of this coproduct. We analyze the associated quadri-coalgebra and codendrifromstructures.
|
2 |
Combinatoire du polynôme de Tutte et des cartes planaires / Combinatorics of the Tutte polynomial and planar mapsCourtiel, Julien 03 October 2014 (has links)
Cette thèse porte sur le polynôme de Tutte, étudié selon différents points de vue. Dans une première partie, nous nous intéressons à l’énumération des cartes planaires munies d’une forêt couvrante, ici appelées cartes forestières, avec un poids z par face et un poids u par composante non racine de la forêt. De manière équivalente, nous comptons selon le nombre de faces les cartes planaires C pondérées par TC(u + 1; 1), où TC désigne le polynôme de Tutte de C. Nous commençons par une caractérisation purement combinatoire de la série génératrice correspondante, notée F(z; u). Nous en déduisons que F(z; u) est différentiellement algébrique en z, c’est-à-dire que F satisfait une équation différentielle polynomiale selon z. Enfin, pour u ≥ -1, nous étudions le comportement asymptotique du n-ième coefficient de F(z; u). Nous observons une transition de phase en 0, avec notamment un régime très atypique en n-3 ln-2(n) pour u ϵ [-1; 0[, témoignant d’une nouvelle classe d’universalité pour les cartes planaires. Dans une seconde partie, nous proposons un cadre unificateur pour les différentes notions d’activités utilisées dans la littérature pour décrire le polynôme de Tutte.La nouvelle notion d’activité ainsi définie est appelée Δ-activité. Elle regroupe toutes les notions d’activité déjà connues et présente de belles propriétés, comme celle de Crapo qui définit une partition (adaptée à l’activité) du treillis des sous-graphes couvrants en intervalles. Nous conjecturons en dernier lieu que toute activité qui décrit le polynôme de Tutte et qui satisfait la propriété susmentionnée de Crapo peut être définie en termes de Δ-activités. / This thesis deals with the Tutte polynomial, studied from different points of view. In the first part, we address the enumeration of planar maps equipped with a spanning forest, here called forested maps, with a weight z per face and a weight u per non-root component of the forest. Equivalently, we count (with respect to the number of faces) the planar maps C weighted by TC(u + 1; 1), where TC is the Tutte polynomial of C.We begin by a purely combinatorial characterization of the corresponding generating function, denoted by F(z; u). We deduce from this that F(z; u) is differentially algebraic in z, that is, satisfies a polynomial differential equation in z. Finally, for u ≥ -1, we study the asymptotic behaviour of the nth coefficient of F(z; u).We observe a phase transition at 0, with a very unusual regime in n-3 ln-2(n) for u ϵ [-1; 0[, which testifiesa new universality class for planar maps. In the second part, we propose a framework unifying the notions of activity used in the literature to describe the Tutte polynomial. The new notion of activity thereby defined is called Δ-activity. It gathers all the notions of activities that were already known and has nice properties, as Crapo’s property that defines a partition of the lattice of the spanning subgraphs into intervals with respect to the activity. Lastly we conjecture that every activity that describes the Tutte polynomial and that satisfies Crapo’s property can be defined in terms of Δ-activity.
|
Page generated in 0.0392 seconds