• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A high performance pseudo-multi-core elliptic curve cryptographic processor over GF(2^163)

Zhang, Yu 22 June 2010
Elliptic curve cryptosystem is one type of public-key system, and it can guarantee the same security level with Rivest, Shamir and Adleman (RSA) with a smaller key size. Therefore, the key of elliptic curve cryptography (ECC) can be more compact, and it brings many advantages such as circuit area, memory requirement, power consumption, performance and bandwidth. However, compared to private key system, like Advanced Encryption Standard (AES), ECC is still much more complicated and computationally intensive. In some real applications, people usually combine private-key system with public-key system to achieve high performance. The ultimate goal of this research is to architect a high performance ECC processor for high performance applications such as network server and cellular sites.<p> In this thesis, a high performance processor for ECC over Galois field (GF)(2^163) by using polynomial presentation is proposed for high-performance applications. It has three finite field (FF) reduced instruction set computer (RISC) cores and a main controller to achieve instruction-level parallelism (ILP) with pipeline so that the largely parallelized algorithm for elliptic curve point multiplication (PM) can be well suited on this platform. Instructions for combined FF operation are proposed to decrease clock cycles in the instruction set. The interconnection among three FF cores and the main controller is obtained by analyzing the data dependency in the parallelized algorithm. Five-stage pipeline is employed in this architecture. Finally, the u-code executed on these three FF cores is manually optimized to save clock cycles. The proposed design can reach 185 MHz with 20; 807 slices when implemented on Xilinx XC4VLX80 FPGA device and 263 MHz with 217,904 gates when synthesized with TSMC .18um CMOS technology. The implementation of the proposed architecture can complete one ECC PM in 1428 cycles, and is 1.3 times faster than the current fastest implementation over GF(2^163) reported in literature while consumes only 14:6% less area on the same FPGA device.
2

A high performance pseudo-multi-core elliptic curve cryptographic processor over GF(2^163)

Zhang, Yu 22 June 2010 (has links)
Elliptic curve cryptosystem is one type of public-key system, and it can guarantee the same security level with Rivest, Shamir and Adleman (RSA) with a smaller key size. Therefore, the key of elliptic curve cryptography (ECC) can be more compact, and it brings many advantages such as circuit area, memory requirement, power consumption, performance and bandwidth. However, compared to private key system, like Advanced Encryption Standard (AES), ECC is still much more complicated and computationally intensive. In some real applications, people usually combine private-key system with public-key system to achieve high performance. The ultimate goal of this research is to architect a high performance ECC processor for high performance applications such as network server and cellular sites.<p> In this thesis, a high performance processor for ECC over Galois field (GF)(2^163) by using polynomial presentation is proposed for high-performance applications. It has three finite field (FF) reduced instruction set computer (RISC) cores and a main controller to achieve instruction-level parallelism (ILP) with pipeline so that the largely parallelized algorithm for elliptic curve point multiplication (PM) can be well suited on this platform. Instructions for combined FF operation are proposed to decrease clock cycles in the instruction set. The interconnection among three FF cores and the main controller is obtained by analyzing the data dependency in the parallelized algorithm. Five-stage pipeline is employed in this architecture. Finally, the u-code executed on these three FF cores is manually optimized to save clock cycles. The proposed design can reach 185 MHz with 20; 807 slices when implemented on Xilinx XC4VLX80 FPGA device and 263 MHz with 217,904 gates when synthesized with TSMC .18um CMOS technology. The implementation of the proposed architecture can complete one ECC PM in 1428 cycles, and is 1.3 times faster than the current fastest implementation over GF(2^163) reported in literature while consumes only 14:6% less area on the same FPGA device.
3

High Speed Scalar Multiplication Architecture for Elliptic Curve Cryptosystem

Hsu, Wei-Chiang 28 July 2011 (has links)
An important advantage of Elliptic Curve Cryptosystem (ECC) is the shorter key length in public key cryptographic systems. It can provide adequate security when the bit length over than 160 bits. Therefore, it has become a popular system in recent years. Scalar multiplication also called point multiplication is the core operation in ECC. In this thesis, we propose the ECC architectures of two different irreducible polynomial versions that are trinomial in GF(2167) and pentanomial in GF(2163). These architectures are based on Montgomery point multiplication with projective coordinate. We use polynomial basis representation for finite field arithmetic. All adopted multiplication, square and add operations over binary field can be completed within one clock cycle, and the critical path lies on multiplication. In addition, we use Itoh-Tsujii algorithm combined with addition chain, to execute binary inversion through using iterative binary square and multiplication. Because the double and add operations in point multiplication need to run many iterations, the execution time in overall design will be decreased if we can improve this partition. We propose two ways to improve the performance of point multiplication. The first way is Minus Cycle Version. In this version, we reschedule the double and add operations according to point multiplication algorithm. When the clock cycle time (i.e., critical path) of multiplication is longer than that of add and square, this method will be useful in improving performance. The second way is Pipeline Version. It speeds up the multiplication operations by executing them in pipeline, leading to shorter clock cycle time. For the hardware implementation, TSMC 0.13um library is employed and all modules are organized in a hierarchy structure. The implementation result shows that the proposed 167-bit Minus Cycle Version requires 156.4K gates, and the execution time of point multiplication is 2.34us and the maximum speed is 591.7Mhz. Moreover, we compare the Area x Time (AT) value of proposed architectures with other relative work. The results exhibit that proposed 167-bit Minus Cycle Version is the best one and it can save up to 38% A T value than traditional one.
4

Concurrent Error Detection in Finite Field Arithmetic Operations

Bayat Sarmadi, Siavash January 2007 (has links)
With significant advances in wired and wireless technologies and also increased shrinking in the size of VLSI circuits, many devices have become very large because they need to contain several large units. This large number of gates and in turn large number of transistors causes the devices to be more prone to faults. These faults specially in sensitive and critical applications may cause serious failures and hence should be avoided. On the other hand, some critical applications such as cryptosystems may also be prone to deliberately injected faults by malicious attackers. Some of these faults can produce erroneous results that can reveal some important secret information of the cryptosystems. Furthermore, yield factor improvement is always an important issue in VLSI design and fabrication processes. Digital systems such as cryptosystems and digital signal processors usually contain finite field operations. Therefore, error detection and correction of such operations have become an important issue recently. In most of the work reported so far, error detection and correction are applied using redundancies in space (hardware), time, and/or information (coding theory). In this work, schemes based on these redundancies are presented to detect errors in important finite field arithmetic operations resulting from hardware faults. Finite fields are used in a number of practical cryptosystems and channel encoders/decoders. The schemes presented here can detect errors in arithmetic operations of finite fields represented in different bases, including polynomial, dual and/or normal basis, and implemented in various architectures, including bit-serial, bit-parallel and/or systolic arrays.
5

Concurrent Error Detection in Finite Field Arithmetic Operations

Bayat Sarmadi, Siavash January 2007 (has links)
With significant advances in wired and wireless technologies and also increased shrinking in the size of VLSI circuits, many devices have become very large because they need to contain several large units. This large number of gates and in turn large number of transistors causes the devices to be more prone to faults. These faults specially in sensitive and critical applications may cause serious failures and hence should be avoided. On the other hand, some critical applications such as cryptosystems may also be prone to deliberately injected faults by malicious attackers. Some of these faults can produce erroneous results that can reveal some important secret information of the cryptosystems. Furthermore, yield factor improvement is always an important issue in VLSI design and fabrication processes. Digital systems such as cryptosystems and digital signal processors usually contain finite field operations. Therefore, error detection and correction of such operations have become an important issue recently. In most of the work reported so far, error detection and correction are applied using redundancies in space (hardware), time, and/or information (coding theory). In this work, schemes based on these redundancies are presented to detect errors in important finite field arithmetic operations resulting from hardware faults. Finite fields are used in a number of practical cryptosystems and channel encoders/decoders. The schemes presented here can detect errors in arithmetic operations of finite fields represented in different bases, including polynomial, dual and/or normal basis, and implemented in various architectures, including bit-serial, bit-parallel and/or systolic arrays.
6

Transformations polynomiales, applications à l'estimation de mouvements et la classification / Polynomial transformations, applications to motion estimation and classification

Moubtahij, Redouane El 11 June 2016 (has links)
Ces travaux de recherche concernent la modélisation de l'information dynamique fonctionnelle fournie par les champs de déplacements apparents à l'aide de base de polynômes orthogonaux. Leur objectif est de modéliser le mouvement et la texture extraites afin de l'exploiter dans les domaines de l'analyse et de la reconnaissance automatique d'images et de vidéos. Nous nous intéressons aussi bien aux mouvements humains qu'aux textures dynamiques. Les bases de polynômes orthogonales ont été étudiées. Cette approche est particulièrement intéressante car elle offre une décomposition en multi-résolution et aussi en multi-échelle. La première contribution de cette thèse est la définition d'une méthode spatiale de décomposition d'image : l'image est projetée et reconstruite partiellement avec un choix approprié du degré d'anisotropie associé à l'équation de décomposition basée sur des transformations polynomiales. Cette approche spatiale est étendue en trois dimensions afin d'extraire la texture dynamique dans des vidéos. Notre deuxième contribution consiste à utiliser les séquences d'images qui représentent les parties géométriques comme images initiales pour extraire les flots optiques couleurs. Deux descripteurs d'action, spatial et spatio-temporel, fondés sur la combinaison des informations du mouvement/texture sont alors extraits. Il est ainsi possible de définir un système permettant de reconnaître une action complexe (composée d'une suite de champs de déplacement et de textures polynomiales) dans une vidéo. / The research relies on modeling the dynamic functional information from the fields of apparent movement using basic orthogonal polynomials. The goal is to model the movement and texture extracted for automatic analysis and recognition of images and videos. We are interested both in human movements as dynamic textures. Orthogonal polynomials bases were studied. This approach is particularly interesting because it offers a multi-resolution and a multi-scale decomposition. The first contribution of this thesis is the definition of method of image spatial decomposition: the image is projected and partially rebuilt with an appropriate choice of the degree of anisotropy associated with the decomposition equation based on polynomial transformations. This spatial approach is extended into three dimensions to retrieve the dynamic texture in videos. Our second contribution is to use image sequences that represent the geometric parts as initial images to extract color optical flow. Two descriptors of action, spatial and space-time, based on the combination of information of motion / texture are extracted. It is thus possible to define a system to recognize a complex action (composed of a series of fields of motion and polynomial texture) in a video.

Page generated in 0.0526 seconds