• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Imprint lithography and characterization of photosensitive polymers for advanced microelectronics packaging

Rajarathinam, Venmathy 23 June 2010 (has links)
To enable fast and reliable processors, advances must be made in the interconnections on the printed circuit board and in the interconnections from the chip to the printed circuit board. Processing techniques have been demonstrated to fabricate a copper-clad encapsulated air dielectric layer to enable low loss off-chip electrical signal lines using sacrificial polymers and the three dimensional patterning capabilities of imprint lithography. The inclusion of an air gap can eliminate the dielectric loss allowing the signal to propagate over longer lengths. Additionally, the low dielectric constant of air lowers the loss contributions from the conductor and increases the signal propagation velocity reducing delay. The metal shielding could minimize the crosstalk noise and radiation losses that are significant at high frequencies. The three dimensional patterning capabilities of imprint lithography fabricated curved structures and rounded terminations which can reduce reflections at discontinuities. Furthermore, imprint lithography also created planarized surfaces which simplified the buildup process. Since imprint lithography, only uses temperature and pressure to make a pattern it is an inexpensive and simple process advancement. The metal-clad encapsulated air dielectric structures were fabricated in a comparable number of registration steps to traditional transmission lines. Implementation of all copper chip to substrate interconnects would provide high conductivity electrical connections, resistance to electromigration while avoiding formation of brittle intermetallics. High aspect ratio polymer molds for copper electroplating interconnects could enable improved integrated circuit electrical performance. The properties of a new aqueous base develop, negative-tone photosensitive polynorbornene polymer have been characterized to develop mechanically compliant all copper connections between the chip and printed circuit board. High aspect ratio features of 7:1 (height:width) were produced in 70 ìm thick films in a single coat with straight side-wall profiles and high fidelity. The polymer films studied had a contrast of 11.6 and a low absorption coefficient. To evaluate the polymer's suitability to microelectronics applications, epoxy cross-linking reactions were studied as a function of processing condition through Fourier transform infrared spectroscopy, nano-indentation, and dielectric measurements. The fully cross-linked films had an elastic modulus of 2.9 GPa and hardness of 0.18 GPa which can improve the mechanical compliance of the copper interconnections. A photo-imprint lithography process was developed to improve the photo-patterning of the polynorbornene polymer for high aspect ratio hollow structures. A shallow photo-imprint stamp was developed to physically displace material in the polymer core. Since the imprint stamp displaces material in the area of the feature, the effective film thickness is reduced compared to the bulk film. The reduction in film height reduced the effects of scattering in the core and also facilitated transport of developer within the core. The photo-imprint lithography process resulted in high aspect ratio hollow core pillars that exceeded optical resolution capabilities for comparable feature sizes.
2

Synthesis and Characterization of Glycomaterials for Antibacterial Applications

Hall, Brady Allen 02 September 2021 (has links)
Every year, millions of people contract antibiotic-resistant bacterial infections, and tens of thousands die from infection-related complications in the United States alone. Bacterial infections are one of the leading causes of death worldwide, especially in healthcare institutes such as hospitals and nursing homes where people are more susceptible to infection and complications. Bacteria can cause infections in any part of the body and often interact with sugar molecules on the surface of cells; once bacteria are attached, the cells stop functioning properly. When a bacterial infection is suspected, samples from the patient's blood or urine are taken to confirm the diagnosis. If the bacterial infection is sever enough, patients are treated with broad-spectrum antibiotics before the type of bacteria is known, and once it has been identified they are given antibiotics that target the specific bacterial strain. The high death rate associated with bacterial infections is largely due to the emergence of antibiotic-resistant bacterial strains. Although antibiotic resistance is present in some naturally occurring bacterial strains, misuse and over-prescription of antibiotics have accelerated the process. To combat the ever-growing threat of antibiotic-resistant bacteria, antibacterial polymers have been developed. Antibacterial polymers prevent bacterial infections by either killing the bacteria themselves or by preventing them from interacting with the body altogether This dissertation primarily focuses on using sugar-containing polymers to prevent bacterial growth. These materials may potentially be used as a replacement for or supplement to traditional antibiotics. / Doctor of Philosophy / All living cells possess a coating of glycomaterials on, or as critical components of their cell walls. Bacteria, including invasive bacterial pathogens, are no exception and have cell walls comprised of peptidoglycans. Glycomaterials on cell surfaces play a role in critical biological processes such as molecular recognition, cellular interaction, infection, and inflammation. Traditional antibiotic remediations are becoming less effective in treating bacterial infections due to the emergence of antibiotic-resistant strains. The formation of biofilms, an extracellular coating composed of polysaccharides, contributes to the antibiotic resistance of bacteria. The development of novel antibiotics is extremely costly and often unsuccessful, with billions in investment often producing zero new drugs. As a result, antibacterial polymers have been investigated as they are comparatively less expensive and offer unique characteristics to combat bacterial infections. Polymers with inherently antibacterial properties, or those that can be conjugated with antibacterial compounds, offer a replacement for traditional antibiotic remediation. To investigate the role of glycomaterials in antibacterial activity, a series of sugar-containing norbornene homopolymers were prepared and evaluated for their antibacterial activity. Protected glycomonomers consisting of galactose, glucose, N-acetyl glucose, and mannose were prepared in a two- or three-step synthesis by first appending an acrylate to the anomeric carbon through Koenigs-Knorr-type chemistry. After generation of the -anomer, the norbornene carboxylate was prepared by the Diels-Alder reaction of the acrylate with cyclopentadiene. Homopolymers with molecular weights ranging from 25–250 KDa were synthesized using ring-opening metathesis polymerization (ROMP) catalyzed by Grubbs 3rd generation catalyst, and subsequently deprotected to reveal the sugar-norbornene. While the galactose polymers showed no bacterial inhibition, those composed of glucose, N-acetyl glucose, or mannose prevented the growth of Escherichia coli (E. coli) and were effective at concentrations as low as 1.25 mg mL-1. Some strains of pathogenic bacteria, such as Clostridioides difficile (formerly known as Clostridium difficile), interfere with the normal cell functions by indirect means, producing toxins that adversely interact with the surrounding tissue. To sequester the toxins produced by C. difficile before they cause damage to the gastrointestinal (GI) tract, polymers containing the -gal epitope, a naturally occurring trisaccharide, were also prepared. The -gal epitope possessing a propyl azide handle at the anomeric carbon was prepared in a 15-step reaction, followed by reaction with an alkyne-functionalized polymer resin using copper-catalyzed azide-alkyne Huisgen cycloaddition. After global deprotection and thorough washing to remove residual copper from the glycomaterial, cell viability studies showed >80% cell survival. While these materials showed good cell viability, the rigorous synthesis of -Gal and the affinity of the polymer scaffolding for copper was a deterrent to further toxin-binding studies. Non-biological surfaces are also often susceptible to bacterial colonization and fouling. Although such materials may be modified to impart antimicrobial properties, their modification may also be a detriment to other key physical properties. To investigate the tradeoffs between material properties and functionalization, we synthesized a series of poly(arylene ether)s from monomers that possessed a modifiable handle and differed only in the pattern of leaving group on the aromatic ring. These polymers were further modified using post-polymerization thiol-ene reactions to evaluate the effect of the side-chains on the material's properties. The regioisomer incorporated into the polymer was found to influence its thermal properties irrespective of the installed functional group, suggesting that new functionality can be incorporated into these polymers without adversely impacting their physical properties.

Page generated in 0.045 seconds