Spelling suggestions: "subject:"polyomino"" "subject:"polyominos""
11 |
Ideals generated by 2-minors: binomial edge ideals and polyomino idealsMascia, Carla 11 February 2020 (has links)
Since the early 1990s, a classical object in commutative algebra has been the study of binomial ideals. A widely-investigated class of binomial ideals is the one containing those generated by a subset of 2-minors of an (m x n)-matrix of indeterminates. This thesis is devoted to illustrate some algebraic and homological properties of two classes of ideals of 2-minors: binomial edge ideals and polyomino ideals.
Binomial edge ideals arise from finite graphs and their appeal results from the fact that their homological properties reflect nicely the combinatorics of the underlying graph. First, we focus on the binomial edge ideals of block graphs. We give a lower bound for their Castelnuovo-Mumford regularity by computing the two distinguished extremal Betti numbers of a new family of block graphs, called flower graphs. Moreover, we present a linear time algorithm to compute Castelnuovo-Mumford regularity and Krull dimension of binomial edge ideals of block graphs. Secondly, we consider some classes of Cohen-Macaulay binomial edge ideals. We provide the regularity and the Cohen-Macaulay type of binomial edge ideals of Cohen-Macaulay cones, and we show the extremal Betti numbers of Cohen-Macaulay bipartite and fan graphs. In addition, we compute the Hilbert-Poincaré series of the binomial edge ideals of some Cohen-Macaulay bipartite graphs.
Polyomino ideals arise from polyominoes, plane figures formed by joining one or more equal squares edge to edge. It is known that the polyomino ideal of simple polyominoes is prime. We consider multiply connected polyominoes, namely polyominoes with holes, and observe that the non-existence of a certain sequence of inner intervals of the polyomino, called zig-zag walk, gives a necessary condition for the primality of the polyomino ideal. Moreover, by computational approach, we prove that for all polyominoes with rank less than or equal to 14 the above condition is also sufficient. Lastly, we present an infinite class of prime polyomino ideals.
|
12 |
Énumération de polyominos définis en terme d'évitement de motif ou de contraintes de convexité / Enumeration of polyominoes defined in terms of pattern avoidance or convexity constraintsBattaglino, Daniela 26 June 2014 (has links)
Dans cette thèse nous étudions la caractérisation et l'énumération de polyominos définis par des contraintes de convexité et ou d'évitement de motifs. Nous nous intéressons à l'énumération des polyominos k-convexes selon le semi périmètre, qui n'était connue que pour k=1,2. Nous énumérons une sous classe, les polyominos k-parallélogrammes, grâce à une décomposition récursive dont nous déduisons la fonction génératrice qui est rationnelle. Cette fonction génératrice s'exprime à l'aide des polynômes de Fibonacci, ce qui nous permet d'en déduire une bijection avec les arbres planaires ayant une hauteur inférieure ou égale à k+2. Dans la deuxième partie, nous examinons la notion d'évitement de motif, qui a été essentiellement étudiée pour les permutations. Nous introduisons ce concept dans le contexte de matrices de permutations et de polyominos. Nous donnons des définitions analogues à celles données pour les permutations et nous explorons ses propriétés ainsi que celles du poste associé. Ces deux approches peuvent être utilisées pour traiter des problèmes ouverts sur les polyominos ou sur d'autres objets combinatoires. / In this thesis, we consider the problem of characterising and enumerating sets of polyominoes described in terms of some constraints, defined either by convexity or by pattern containment. We are interested in a well-known subclass of convex polyominoes, the k-convex polyominoes for which the enumeration according to the semi-perimeter is known only for k=1,2. We obtain, from recursive decomposition, the generating function of the class of k-convex parallelogram polyominoes, which turns out to be rational. Noting that this generating function can be expressed in terms of the Fibonacci polynomials, we describe a bijection between the class of k-parallelogram polyominoes and the class of planted planar trees having height less than k+3. In the second part of the thesis we examine the notion of pattern avoidance, which has been extensively studied for permutations. We introduce the concept of pattern avoidance in the context of matrices, more precisely permutation matrices and polyomino matrices. We present definitions analogous to those given for permutations and in particular we define polyomino classes, i.e. sets downward closed with respect to the containment relation. So, the study of the old and new properties of the redefined sets of objects has not only become interesting, but it has also suggested the study of the associated poset. In both approaches our results can be used to treat open problems related to polyominoes as well as other combinatorial objects.
|
Page generated in 0.0242 seconds