• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel physicochemical properties of polyubiquitin chains / ポリユビキチン鎖の新規物理化学的性質

Morimoto, Daichi 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19004号 / 工博第4046号 / 新制||工||1623(附属図書館) / 31955 / 京都大学大学院工学研究科分子工学専攻 / (主査)教授 白川 昌宏, 教授 渡辺 宏, 教授 跡見 晴幸 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
2

Structural Basis for Linear Polyubiquitination / 直鎖型ポリユビキチン化の構造基盤

Tokunaga, Akira 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21791号 / 工博第4608号 / 新制||工||1718(附属図書館) / 京都大学大学院工学研究科分子工学専攻 / (主査)教授 白川 昌宏, 教授 佐藤 啓文, 教授 跡見 晴幸 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
3

The determinants of chain type specificity and the mechanism of polyubiquitination by HECT E3s

Kim, Hyung Cheol 26 January 2011 (has links)
Ubiquitination is a post-translational modification that can take several forms. Some proteins are modified with a single ubiquitin molecule, while others are modified with polyubiquitin chains. Each type of ubiquitination is thought to have distinct biological functions. The best-characterized types of ubiquitin modification are K48-linked polyubiquitination, which serves as a signal for proteasomal degradation and K63-linked polyubiquitination, which has non-proteolytic functions such in DNA repair, signaling, and endocytosis. HECT ubiquitin ligases (HECT E3s) form a class of E3s, defined by a C terminal catalytic domain. Several lines of evidence suggested that the HECT E3s assemble a polyubiquitin chain in a sequential manner with one molecule of ubiquitin at a time being conjugated to the distal ubiquitin of the chain. In the process of chain elongation, not all HECT E3s target a common internal lysine of ubiquitin, leading to diversification of chain type specificity in HECT E3s. For example, yeast Rsp5 forms K63 chains, while human E6AP forms K48 chains. Two important mechanistic questions were addressed in my work: 1) what are the determinants of chain type specificity of HECT E3s, and 2) what allows the distal ubiquitin of a chain to be continuously oriented near the active site of the HECT domain in the course of a sequential polyubiquitination reaction? I have determined that the chain type specificity of Rsp5 is a function solely of the HECT domain. Further, through the generation of chimeric HECT E3s, I demonstrated that chain type specificity determinants are located within the last 60 amino acids of the C lobe of the HECT domain. To address the second question, we solved the structure of Rsp5 HECT domain in complex with non-covalently bound ubiquitin in collaboration with Jue Chen’s laboratory (Purdue University). From the structure, we found that the N lobe of the HECT domain binds ubiquitin in a manner distinct from other known ubiquitin binding domains, and I have shown that Rsp5 proteins defective for ubiquitin binding are defective for chain elongation. We hypothesize that the ubiquitin binding site functions in the recruitment of the distal ubiquitin of polyubiquitin chain for efficient polyubiquitination. / text
4

Structural Study of Proteins Involved in Autophagy / オートファジーに関与するタンパク質の構造生物学的研究

Walinda, Erik 24 September 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19315号 / 工博第4112号 / 新制||工||1634(附属図書館) / 32317 / 京都大学大学院工学研究科分子工学専攻 / (主査)教授 白川 昌宏, 教授 跡見 晴幸, 教授 梶 弘典 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM

Page generated in 0.0634 seconds