• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 44
  • 25
  • 12
  • 11
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 185
  • 185
  • 185
  • 73
  • 43
  • 42
  • 39
  • 36
  • 29
  • 27
  • 26
  • 26
  • 25
  • 25
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Dietary polyunsaturated fatty acids modify plasma lipids and red blood cell membrane composition but do not induce ∆6 desaturase mediated conversions in the domestic feline

McClure, Melena Kathleen 15 May 2009 (has links)
This study explored the effects of dietary unsaturated fatty acids on feline lipid metabolism. It was hypothesized that high dietary linoleic acid (18:2n-6, LA) would enhance conversion to arachidonic acid (20:4n-6), enrichment of dietary long chain n-3 FA (LCn-3FA) would affect lipid parameters, and n-3 FAs incorporation may blunt n-6 FA incorporation. Twenty-nine cats were randomized into groups (n = 9, 10, 10), and fed for 28 days with blood collections on days 0, 14, and 28. Experimental diets consisted of a commercial diet, supplemented with 8g oil/100g kibble. Oil supplements and subsequent diets were: high-oleic sunflower (H diet) with 82% oleic acid (18:1n-9), Menhaden fish (M diet) with LCn-3FA, and safflower (S diet) with 75% 18:2n-6. Dietary 20:4n-6 content was: 0.03 for H and S, and 0.09 for M (g FA/kg diet). Nonesterified fatty acid (NEFA), triacylglycerol (TG), total cholesterol (TC), lipoproteincholesterol (LP-C), plasma phospholipid (PL) FAs, red blood cell membrane (RBC) FAs, and ∆5 and ∆6 desaturase indices were measured. Statistical analyses were performed with SAS PROC MIXED with p < 0.05 determining significance. Neither TC nor NEFA showed significant effects. Diet M resulted in significant TG lowering, despite typically low feline TGs. Similarly, pre-β LP-C (i.e. TG-rich VLDL) was decreased in diet M. Plasma PL FAs revealed significant accumulations of the following: 18:1n-9 in diet H, 18:2n-6 in diet S, and LCn-3FA in diet M. Despite high dietary 18:2n-6, plasma PL 20:4n-6 was not increased in diet S over diets H or M. Increased docosadienoic acid (20:2n-6) in diet S demonstrated that 18:2n-6 chain elongation occurred in deference to its ∆6 desaturation further substantiating low feline ∆6 desaturase activity. Interestingly, no diet M blunting of 20:4n-6 incorporation occurred because fish oil supplementation provided additional 20:4n-6. Tissue 20:4n-6 content appears to be diet-dependent. Accumulation of eicosapentaenoic acid (20:5n-3), but low affinity for docosahexaenoic acid (22:6n-3) occurred in diet M RBC membranes. After 28 days, plasma PLs reflect dietary intake more readily than RBC membranes. Fish oil supplementation resulted in plasma PL LCn-3FA enrichment and lowered plasma TG concentrations, both of which may have physiological significance in cats.
22

Investigating the Molecular Order and Orientation of Cholesterol in Mixtures of Polyunsaturated Phospholipids

Braithwaite, Iain M. 26 August 2011 (has links)
Cholesterol is critical to ensure proper functioning of a membrane. Despite this, the movement of cholesterol within the cell is not fully understood. The molecular order of binary and ternary mixtures of polyunsaturated fatty acids with varying degrees of hy- drocarbon chain unsaturation with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and/or cholesterol was studied using 2H NMR. The introduction of cholesterol into sam- ples of 18:1PC, 18:2PC (unsaturated lipid/DMPC-d54/CHOL, 75:5:20mol%) increased the C-2H bond order by ∼30%. Similar bond ordering was found for 20:4PC and 22:6PC samples, however, they were temperature dependent. A two-phase region (lo-ld) was found for 22:6PC:DMPC-d54/CHOL (75:5:20mol%) for temperatures below 286.7 K. The reorientation axis formed an angle of 78±4◦ with respect to the C3-2H bond vector re- gardless of the lipid. The order parameter of cholesterol was temperature independent, and ranged from 0.69±0.04 to 0.78±0.04 depending on the lipid unsaturation. The re- orientation axis of cholesterol was oriented at ∼25◦ to the bilayer normal.
23

The iFat-1 Transgene Permits Conditional Endogenous n-3 Polyunsaturated Fatty Acid Enrichment both in vitro and in vivo

Clarke, Shannon 18 January 2013 (has links)
Based on their highly bioactive properties in membrane phospholipids, there is growing recognition that dietary n-3 polyunsaturated fatty acids (PUFA) may be of significant benefit in the prevention and treatment of many lifestyle related pathologies, however direct evidence is lacking. The fat-1 transgenic mouse, a genetic model of n-3 PUFA enrichment, is a useful tool in nutritional research which has provided enhanced insight into the health effects of lifelong n-3 PUFA exposure. However, the influence of timing of n-3 PUFA exposure on health related outcomes remains unclear. This thesis describes the functional characterization of the novel Cre recombinase dependent inducible fat-1 (iFat-1) transgene. In the presence of Cre, the iFat-1 transgene was found to reduce phospholipid n-6/n-3 PUFA ratios both in vitro (100%) and in vivo (upwards of 70%), suggesting that the iFat-1 transgene has potential application to address temporal effects of n-3 PUFA in health and disease. / Canadian Institutes of Health Research - Frederick Banting and Charles Best Canada Graduate Scholarship, Sun Life Financial
24

The Modulating Effect of Fatty Acids on the Lipid Profile in Colon Epithelial Mucosa In Vivo.

Abrahams, Celeste H. January 2009 (has links)
<p>Several abnormal conditions, including some cancers, have been associated with changes in the membrane lipid and FA composition. Dietary fat serves as a major source of lipids and FA, particularly the polyunsaturated fatty acids (PUFA), n-6 and n-3. High intakes of n-6 PUFA have been linked to the development of colon cancer in association with low n-3 PUFA intake. Therefore understanding the differences in the lipid and FA profiles between cancer and normal cells in the colon, and the role diet plays in these factors may be invaluable in understanding their role in carcinogenesis. This study compares the lipid profile of azoxymethane (AOM) induced colon polyps to that of the surrounding mucosa tissue in rats fed a diet high in n-6 PUFA. Male Fischer rats were fed the AIN-76A diet containing sunflower oil that has high n-6 PUFA content for a period of nine months. Results indicate that the lipid and FA content of the colon polyps differs significantly from the surrounding mucosa. Colon polyps had an increase in membrane phopholipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Changes in membrane fluidity were indicated by the decrease (p&lt / 0.05) in the PC/PE and cholesterol/phospholipids (chol/PL) ratios, and increase (p&lt / 0.05) in the polyunsaturated FA/saturated FA (P/S) ratio. Metabolism of FA was significantly altered in the polyps favouring n-6 FA metabolism and the production of prostaglandin E2. No clear indication of impaired &Delta / 6-desauturase enzyme activity was noticed. Increases in the n-6 PUFA content could be a reflection of the dietary FA intake that increases FA incorporation in the polyps. Changes in the FA parameters of the polyps, particularly an increase in C20:4n-6 and the n6/n3 ratio have been shown to contribute to the rapid growth of cancer tissue. These lipid changes associated with the development of colon polyps could provide unique targets for developing strategies in chemoprevention by dietary manipulation.</p>
25

Anticonvulsant Effects of Omega-3 Polyunsaturated Fatty Acids in Rodents

Taha, Ameer 17 January 2012 (has links)
The present research examined the hypothesis that omega-3 polyunsaturated fatty acids would increase seizure threshold in rats in vivo, and reduce neuronal excitability in mouse hippocampal slices. Seizure thresholds were measured in rats using the maximal pentylenetetrazol and electrical stimulation seizure tests following α-linolenic acid (ALA) or docosahexaenoic acid administration. ALA raised seizure threshold in the maximal PTZ seizure test, but this effect probably occurred because ALA displaced DHA from liver to the brain. DHA itself was therefore tested in the PTZ and electrical stimulation seizure tests. Direct administration of DHA by subcutaneous injection raised seizure thresholds in the PTZ seizure test, which models tonic-clonic attacks in humans. Dietary enrichment with DHA raised afterdischarge seizure thresholds in the cortex and amygdala, which model simplex and complex partial seizures in humans, although this effect took some time to occur. In vitro, the application of DHA also reduced the incidence of excitatory sharp waves in mouse hippocampal slices. This effect did not appear to be due to either an increase in GABAergic inhibitory tone, nor to a decrease in glutamatergic drive. The fatty acid composition of phospholipids and unesterified fatty acids were measured in the brain following microwave fixation in order to determine whether the effects of DHA on seizure thresholds were due to its de-esterification from the phospholipid membrane. The assay surprisingly revealed that subcutaneous administration of DHA at a dose that raised seizure threshold, increased unesterified arachidonic acid, but not unesterified DHA concentrations during seizures. The results of these studies support the hypothesis that DHA raises seizure threshold in rats, and reduces neuronal excitability in vitro. The effects of DHA on seizure threshold are possibly mediated by the de-esterification of arachidonic acid, which is known to have effects on the voltage-dependent sodium channel.
26

Omega-3 fatty acids and depression in the perinatal period

Rees, Anne-Marie, Psychiatry, Faculty of Medicine, UNSW January 2009 (has links)
Omega-3 fatty acids are increasingly recognised as playing an important role in human brain development and mental health. The polyunsaturated fatty acids (PUFAs) include omega-3 and omega-6 fats which are essential fatty acids (EFAs), consumed via the diet. Omega-3 fatty acids are particularly abundant in fish oils. The omega-3 fatty acids are being focused on for their role in depression, the main types being docosahexaenoic acid (DHA), which is abundant in neural tissue, and also eicosapentaenoic acid (EPA) which is biologically very active. There is an emerging literature in relation to omega-3 fatty acid blood levels in depression and the effects of treatment with omega-3. Strong epidemiological evidence has also been published indicating an association between a population's fish intake and depression rates. A specific research focus on omega-3 as a treatment for depression in the perinatal period is also starting to emerge. The importance of this particular area is enhanced by the knowledge that omega-3 depletion occurs during the perinatal period due to fetal diversion for neurodevelopment. In view of the lay public promotion of omega-3 and its appeal to women as a 'natural therapy', there is a need to scientifically evaluate its effectiveness to treat depression in the perinatal period. It is also important to investigate omega-3 as an alternative to antidepressants given the ongoing uncertainties regarding their safety in pregnancy. In this thesis a literature review presents current research relating to this field. This is followed by a description of the methodology and results for the two trials conducted. The results of the double-blind randomised placebo controlled trial of omega-3 as a treatment for depression in the perinatal period were essentially negative. However this result is limited by the small sample size in the study and therefore it may be unwise to interpret the result as conclusive. The case-control study confirmed the hypothesis that omega-3 levels were more depleted in depressed women compared to non-depressed women. A discussion of the results and trial limitations then follows in the thesis. It is concluded that further larger studies are warranted in this area.
27

The modulating effect of fatty acids on the lipid profile in colon epithelial mucosa in Vivo

Abrahams, Celeste H. January 2009 (has links)
Magister Scientiae - MSc / Several abnormal conditions, including some cancers, have been associated with changes in the membrane lipid and FA composition. Dietary fat serves as a major source of lipids and FA, particularly the polyunsaturated fatty acids (PUFA), n-6 and n-3. High intakes of n-6 PUFA have been linked to the development of colon cancer in association with low n-3 PUFA intake. Therefore understanding the differences in the lipid and FA profiles between cancer and normal cells in the colon, and the role diet plays in these factors may be invaluable in understanding their role in carcinogenesis. This study compares the lipid profile of azoxymethane (AOM) induced colon polyps to that of the surrounding mucosa tissue in rats fed a diet high in n-6 PUFA. Male Fischer rats were fed the AIN-76A diet containing sunflower oil that has high n-6 PUFA content for a period of nine months. Results indicate that the lipid and FA content of the colon polyps differs significantly from the surrounding mucosa. Colon polyps had an increase in membrane phopholipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Changes in membrane fluidity were indicated by the decrease (0.05) in the PC/PE and cholesterol/phospholipids (chol/PL) ratios, and increase (0.05) in the polyunsaturated FA/saturated FA (P/S) ratio. Metabolism of FA was significantly altered in the polyps favouring n-6 FA metabolism and the production of prostaglandin E2. No clear indication of impaired & Delta;6-desauturase enzyme activity was noticed. Increases in the n-6 PUFA content could be a reflection of the dietary FA intake that increases FA incorporation in the polyps. Changes in the FA parameters of the polyps, particularly an increase in C20:4n-6 and the n6/n3 ratio have been shown to contribute to the rapid growth of cancer tissue. These lipid changes associated with the development of colon polyps could provide unique targets for developing strategies in chemoprevention by dietary manipulation. / South Africa
28

Dietary Nutrient Intake and Cytokines in Children with Asthma and Allergic Disease

Sullivan, Allison January 2019 (has links)
No description available.
29

Studies on the Ameliorating Effects of Oxygenated Fatty Acids on Lipid Metabolism / 酸素化脂肪酸の脂質代謝改善作用に関する研究

Nanthirudjanar, Tharnath 24 September 2013 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第17896号 / 農博第2019号 / 新制||農||1017(附属図書館) / 学位論文||H25||N4792(農学部図書室) / 30716 / 京都大学大学院農学研究科応用生物科学専攻 / (主査)教授 菅原 達也, 教授 左子 芳彦, 教授 澤山 茂樹 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
30

Omega-3 Polyunsaturated Fatty Acids: Photoprotective Macronutrients

Nicolaou, Anna, Pilkington, S.M., Rhodes, L.E., Watson, R.B. January 2011 (has links)
No / Ultraviolet radiation (UVR) in sunlight has deleterious effects on skin, while behavioural changes have resulted in people gaining more sun exposure. The clinical impact includes a year-on-year increase in skin cancer incidence, and topical sunscreens alone provide an inadequate measure to combat overexposure to UVR. Novel methods of photoprotection are being targeted as additional measures, with growing interest in the potential for systemic photoprotection through naturally sourced nutrients. Omega-3 polyunsaturated fatty acids (n-3 PUFA) are promising candidates, showing potential to protect the skin from UVR injury through a range of mechanisms. In this review, we discuss the biological actions of n-3 PUFA in the context of skin protection from acute and chronic UVR overexposure and describe how emerging new technologies such as nutrigenomics and lipidomics assist our understanding of the contribution of such nutrients to skin health.

Page generated in 0.0681 seconds