Spelling suggestions: "subject:"more deworming coxins"" "subject:"more deworming caloxins""
1 |
Modeling Lysis Dynamcis Of Pore Forming Toxins And Determination Of Mechanical Properties Of Soft MaterialsVaidyanathan, M S 11 1900 (has links) (PDF)
Pore forming toxins are known for their ability to efficiently form transmembrane pores which eventually leads to cell lysis. PFTs have potential applications in devel-oping novel drug and gene delivery strategies. Although structural aspects of many pore forming toxins have been studied, very little is known about the dynamics and subsequent rupture mechanisms. In the first part of the thesis, a combined experimental and modeling study to understand the lytic action of Cytolysin A (ClyA) toxins on red blood cells (RBCs) has been presented. Lysis experiments are carried out on a 1% suspension of RBCs for different initial toxin concentrations ranging from 100 – 500 ng/ml and the extent of lysis is monitored spectrophotometrically. Using a mean field approach, we propose a non – equilibrium adsorption-reaction model to quantify the rate of pore formation on the cell surface. By analysing the model in a pre-lysis regime, the number of pores per RBC to initiate rupture was found to lie between 400 and 800. The time constants for pore formation are estimated to lie between 1-25 s and monomer conformation time scales were found to be 2-4 times greater than the oligomerization times. Using this model, we are able to predict the extent of cell lysis as a function of the initial toxin concentration. Various kinetic models for oligomerization mechanism have been explored. Irreversible sequential kinetic model has the best agreement with the available experimental data. Subsequent to the mean field approach, a population balance model was also formulated.
The mechanics of cell rupture due to pore formation is poorly understood. Efforts to address this issue are concerned with understanding the changes in the membrane mechanical properties such as the modulus and tension in the presence of pores. The second part of the thesis is concerned with using atomic force microscopy to measure the mechanical properties of cells. We explore the possibility of employing tapping mode AFM (TM-AFM) to obtain the elastic modulus of soft samples. The dynamics of TM-AFM is modelled to predict the elastic modulus of soft samples, and predict optimal cantilever stiffness for soft biological samples. From experiments using TM-AFM on Nylon-6,6 the elastic modulus is predicted to lie between 2 and 5 GPa. For materials having elastic moduli in the range of 1– 20 GPa, the cantilever stiffness from simulations is found to lie in the range of 1 – 50 N/m. For soft biological samples, whose elastic moduli are in the range of 10-1000 kPa, a narrower range of cantilever stiffness (0.1 – 0.6 N/m), should be used.
|
2 |
Characterization of Mitilysin Pores by Cryo-electron MicroscopyNovakovic, Vladimir January 2023 (has links)
Pore forming toxins (PFTs) are a large group of proteins found mainly in bacteria with some exceptions found in animals. They bind and form pores in their target membranes and form pores, which leads to cell death. Among these are cholesterol-dependent cytolysins (CDC), which require the presence of cholesterol to bind target membranes. Mitilysin (Mly), a protein of interest in this project, belongs to the CDC group of pore forming toxins. It is produced by the bacterium Streptococcus mitis, a pathogen closely related to Streptococcus pneumoniae, found in human oral cavity, which causes several diseases such as Viridans Group Streptococcal (VGS) toxic shock syndrome and endocarditis. Mly is a homologue of the toxin Pneumolysin, which is produced by S. pneumoniae. However, the mechanism of pore formation is not well known. The purpose of this project is to understand the mechanism of CDC pore formation, focusing on the key amino acid residues that are responsible for transitioning from Mly pre-pore to pore state. The findings will aid in the design of inhibitors of pore formation as potential anti-bacterial drug candidates. The major goal of the project was to determine the 3-dimensional (3D) structure of assembled Mly pore. Mly is expressed in E.coli and purified by Ni-NTA affinity chromatography. Pore formation is confirmed by a hemolysis assay and negative stain-transmission electron microscopy. Mly pores are vitrified, analyzed and imaged in a cryo-electron microscope. 2D images were processed to generate a 3D density map. However, our Mly pore 3D map was incomplete due to lack of 2D projection angles resulting from preferred orientation of pore particles during sample preparation. To overcome this problem, we aim to use DNA origami, which requires His-tagged Mly. We were able to determine that His-tagged Mly retains its pore formation ability.
|
3 |
Pathogen entry mechanisms and endocytic responses to plasma membrane damageNygård Skalman, Lars January 2017 (has links)
Endocytosis is a fundamental cellular process by which cells transport material from the outside to the inside of the cell through the formation of membrane invaginations that bud off from the plasma membrane. This process is important for nutrient uptake, regulating cell surface receptors and the overall plasma membrane composition. Cells have several different types of endocytic pathways where clathrin- mediated endocytosis is the most studied. Importantly, pathogens and secreted virulence factors bind to cell surface receptors and hijack the endocytic pathways in order to enter host cells. Depending on their size and molecular composition, pathogens and virulence factors are thought to make use of distinct endocytic pathways into the cell. This thesis focuses on early host cell interactions with virus, bacterial membrane vesicles and a pore-forming toxin, with a particular emphasis on endocytic mechanisms and plasma membrane repair. During entry of pathogens, it is thought that interactions with specific cell surface molecules drive the recruitment of endocytic proteins to the plasma membrane. Viruses possess a very defined molecular composition and architecture, which facilitate specificity to these interactions. We found that Adenovirus 37, a human ocular pathogen, binds to αVβ1 and α3β1 integrins on human corneal epithelial cells and that this interaction is important for infection. In contrast to viruses, membrane vesicles shed from Helicobacter pylori are heterogeneous in size and molecular composition. These vesicles harbour various adhesins and toxins that may facilitate binding to the cell surface and recruitment of different endocytic pathways. We developed a quantitative internalization assay and showed that the H. pylori vesicles were internalized mainly via clathrin-mediated endocytosis but were also capable of exploiting other endocytic pathways. Damage to the plasma membrane disrupts cellular homeostasis and can lead to cell death if not repaired immediately. Although endocytic mechanisms have been shown to be important for plasma membrane repair, little is known about their specific role. Listeriolysin O (LLO) is a bacterial toxin that can form pores in the plasma membrane and disrupt cellular homeostasis. We developed a reporter system for real-time imaging of the endocytic response to LLO pore formation. We found that two clathrin-independent endocytic pathways were important for plasma membrane repair. However, they were not directly involved in removing LLO pores from the plasma membrane. Our data suggests that these endocytic systems might rather influence membrane repair by their ability to regulate the plasma membrane composition, shape and tension. In conclusion, this thesis describes how pathogens and their virulence factors make use of specific mechanisms to enter host cells as well as revealing new insights on the role of the endocytic pathways in plasma membrane repair.
|
Page generated in 0.0853 seconds