• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • Tagged with
  • 16
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

<b>DIRECT IN SITU MEASUREMENT OF PFAS LEACHING AT A LONG-TERM LAND-APPLIED BIOSOLIDS SITE</b>

Jamie Ellen Klamerus (18423201) 22 April 2024 (has links)
<p dir="ltr">Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals known for their persistence in the environment and potential health risks. PFAS are linked to several adverse effects in human and wildlife health. The detection of PFAS in biosolids has raised concerns about their use in agricultural and land application practices. This is because some PFAS are known to enter the food system through plant uptake and some leach into groundwater. The purpose of this study was to examine the PFAS profile in soils and porewater with depth at an agricultural site with historical biosolids applications. The site selected has received biosolids at agronomic rates for corn for approximately four decades. This study utilized a total of six lysimeters, three “shallow” at 60 cm and three “deep” at 120 cm, to monitor PFAS leaching in soil. Porewater samples were collected within 1-3 days after rain events based on rainfall amount and response of the moisture sensor installed at the site. For each of five porewater sampling events, PFAS and supplemental water parameters like total organic carbon (TOC) and pH were measured. Soil cores, taken in one-foot increments before and after the 3-month study, were analyzed for PFAS, soil OC, moisture, and grain size. All samples were analyzed using high resolution mass spectrometry for 54 PFAS and in line with EPA 1633 method. Soil characteristics such as texture, moisture, and soil OC significantly influence PFAS transport and sorption capacity within the soil profile, impacting PFAS distribution across soil depths. PFAS in the soil profile decreased with increasing depth and directly correlated with soil OC. Long chain PFAS were strongly retained in the top 60 cm and minimally distributed to the porewater. Short-chain PFAS proportionally dominated porewater samples, with elevated concentrations observed in shallow porewater driven by increased saturation (perched water) from a low permeability clay layer. Unsaturated conditions enhance PFAS retardation through air-water interface partitioning in addition to soil particle sorption mechanisms. In this study, less than 0.1% of PFAS leach from the vadose zone of a biosolid impacted plot annually, underscoring the longevity of PFAS in the soil profile and importance of understanding PFAS transport dynamics for effective environmental management.</p>
12

Polychlorinated biphenyls in the bulk sediment and porewater of the surficial sediment from the Chicago Sanitary and Ship Canal

O'Sullivan, Colin Patrick 01 May 2015 (has links)
Polychlorinated Biphenyls (PCBs) are persistent organic pollutants known for their toxicological effects. Though industrial production of legacy PCBs was banned in 1977, they can still be measured in nearly all environmental matrices. The Chicago Sanitary and Ship Canal (CSSC) is lined with industry and the receiving waters to the Stickney Water Reclamation Plant, the World's largest waste water treatment plant and was therefore speculated to be a potential source of PCBs to the Greater Chicago Area. Surficial sediment samples were acquired along a 45 km stretch of the CSSC, from Kedzie Ave. to Lockport. PCBs in the bulk sediment were extracted using accelerated solvent extraction while PCBs in the porewater were extracted using solid phase micro extraction. The PCBs were identified and quantified using a variation on EPA method 1668C. A total of 176 individual and coeluting PCBs were identified and quantified in this study. The sum of PCB concentrations in the bulk sediment was found to range from 70 to 4970 ng/g dry wt. The sum of PCB concentrations in the freely dissolved sediment-porewater was found to range from 2 to 366 ng/L. The bulk and porewater concentrations were used to estimate an average mass flow rate of PCBs through the CSSC of 368 kg/y. The large mass flow rate of PCBs passing through the CSSC and the fact that the CSSC connects Lake Michigan to the Mississippi River suggest that continued monitoring of PCB concentrations are necessary to better understand the transport and fate of PCBs in and out of the Great Chicago Area.
13

PRESSURE CORE ANALYSIS: THE KEYSTONE OF A GAS HYDRATE INVESTIGATION

Schultheiss, Peter, Holland, Melanie, Roberts, John, Humphrey, Gary 07 1900 (has links)
Gas hydrate investigations are converging on a suite of common techniques for hydrate observation and quantification. Samples retrieved and analyzed at full in situ pressures are the ”gold standard” with which the physical and chemical analysis of conventional cores, as well as the interpretation of geophysical data, are calibrated and groundtruthed. Methane mass balance calculations from depressurization of pressure cores provide the benchmark for gas hydrate concentration assessment. Nondestructive measurements of pressure cores have removed errors in the estimation of pore volume, making this methane mass balance technique accurate and robust. Data from methane mass balance used to confirm chlorinity baselines makes porewater freshening analysis more accurate. High-resolution nondestructive analysis of gas-hydratebearing cores at in situ pressures and temperatures also provides detailed information on the in situ nature and morphology of gas hydrate in sediments, allowing better interpretation of conventional core thermal images as well as downhole electrical resistivity logs. The detailed profiles of density and Vp, together with spot measurements of Vs, electrical resistivity, and hardness, provide background data essential for modeling the behavior of the formation on a larger scale. X-ray images show the detailed hydrate morphology, which provides clues to the mechanism of deposit formation and data for modeling the kinetics of deposit dissociation. Gashydrate- bearing pressure cores subjected to X-ray tomographic reconstruction provide evidence that gas hydrate morphology in many natural sedimentary environments is particularly complex and impossible to replicate in the laboratory. Even when only a small percentage of the sediment column is sampled with pressure cores, these detailed measurements greatly enhance the understanding and interpretation of the more continuous data sets collected by conventional coring and downhole logging. Pressure core analysis has become the keystone that links these data sets together and is an essential component of modern gas hydrate investigations.
14

Flows Form Forests: The Mangrove Groundwater Feedback Model MANGA

Bathmann, Jasper 20 January 2022 (has links)
Due to the wide range of provided ecosystem services of mangroves, their conservation, maintenance, and restoration is of major public interest. The distribution of species and plant growth forms in mangrove ecosystems is patterned in zones. The characteristics of these zonation patterns can provide evidence on ecosystem properties. There is ongoing discussion on the drivers leading to mangrove zonation. No full mechanistic explanation to understand the complete interaction of the multiple factors that determine the mangrove zonation patterns exists.Therefore, the underlying processes require deeper evaluation.This will help to better design mangrove conservation projects, and allow more reliable projections of ecosystem development in a changing climate. Numerical and conceptual modelling facilitates the understanding of system dynamics. In this work, I present the process- and individual-based mangrove population dynamics model MANGA. The mechanistic modelling approach is based on first principles. With the full coupling between a groundwater flow model and an individual-based mangrove growth model, MANGA provides a novel approach to study mangrove ecosystem dynamics. MANGA describes observed mangrove stand zonation in species distribution and plant growth forms as the consequence of the apparent site conditions such as hydrologic conductivity, porewater salinity distribution and the tidal regime. Model parameterization does not only depend on empirical evidence.Knowledge on the underlying processes can also be used for model calibration. Varying model boundary conditions and parameters provides insights to the influence of a variety of abiotic drivers on mangrove zonation. The MANGA model is capable to simulate the reaction of mangrove ecosystem to variations of environmental conditions related to climate change. According to MANGA simulations, for example, mangrove species composition depends on freshwater inputs which alter with varying precipitation regimes. Based on the presented applications of the mechanistic modelling approach, I discuss benefits and current limitations, and outline possible future use of the MANGA model.
15

Dynamique des éléments biogènes dans le continuum fluvio-estuarien de la zone hydrologique d'influence du Bassin d'Arcachon

Canton, Mathieu 09 December 2009 (has links)
Les bassins versants anthropisés sont soumis à des forçages qui évoluent rapidement et déséquilibrent les écosystèmes. Les écosystèmes côtiers et en particulier lagunaires sont très sensibles à la qualité et à la quantité de la source biogène d’origine continentale. La lagune d’Arcachon (Sud Ouest de la France) est alimentée par un bassin versant de 3.000 km2 dont l’occupation des sols est dominée par la forêt depuis plus de 150 ans. La maïsiculture s’est fortement développée depuis les années 1970 et un centre de stockage de déchets ménagers et industriels (CSDU) a été aménagé à moins de 3 km du littoral. Cette thèse se propose d’évaluer la dynamique des éléments biogènes dans le continuum fluvio-estuarien du bassin versant. L’analyse de l’occupation des sols par SIG, une mission d’observation de deux ans, et des études ponctuelles de crues et du continuum fluvial ont permis d’évaluer précisément le flux biogène d’origine continentale et de construire les bases d’un modèle de transport : les taux d’exportation dépendent de l’occupation des sols avec 45, 93, 2.850 et 61 kg N-Nitrate km-2 an-1 calculés pour les parcelles forestières, déforestées, agricoles et urbaines respectivement. L’exportation a lieu préférentiellement en tout début de crue mais le lessivage est rapidement limité. En revanche, les eaux souterraines peuvent contribuer significativement au flux annuel pour les bassins versants les plus agricoles. On a pu démontrer qu’une réduction de 10 % des apports d’engrais azotés réduirait de plus de 50 % le flux d’azote vers la lagune. Une étude approfondie intégrant hydrologie, biogéochimie et géophysique a permis de comprendre les mécanismes de dispersion et d’atténuation d’un panache de pollution issu du CSDU. Celui-ci s’écoule vers la lagune avec l’aquifère superficiel à une vitesse de 23 m an-1 pour l’ammonium et environ 50 m an-1 pour le chlorure mettant en évidence une forte atténuation de l’ammonium dans l’aquifère par sorption et nitrification. Actuellement, le panache n’a pas atteint le littoral et seul le drainage par la rivière permet une exportation rapide jusqu’à la lagune. Ce drainage favorise une très forte nitrification dans la zone hyporhéique et dans la rivière, ce qui limite le flux d’ammonium vers la lagune. Dans ces conditions, le temps de résidence de l’ammonium dans l’aquifère est entre 7 et 18 ans. L’intégration des processus biogéochimiques estuariens dans la dynamique des flux biogènes vers la lagune est une nouveauté. L’étude des éléments biogènes et de la matière organique particulaire permet de démontrer que les estuaires de la lagune sont autotrophes à l’échelle de l’année et permettent un abattement d’environ 30 % du flux de nitrate continental. Saisonnièrement toutefois, les processus de reminéralisation peuvent dominer. Les estuaires ont peu d’impact sur la biogéochimie du phosphore contrairement au sédiment de la lagune. / The anthropized watersheds shift quickly and may disturb the ecosystems. Coastal ecosystems and coastal lagoons are highly sensitive to the amount and the quality of biogenic material originating from continents. The Arcachon lagoon (France South West) raises continental waters originating from a watershed of 3,000 km2 . Pine forestry cover the main surface area of the watershed since 150 years. Cornfields are appeared since 1970 and quickly increase. A solid waste disposal has been created near the littoral. The purpose of this PhD is to assess the global cycle of biogenic materials through the riverine and estuarine continuum. Land-use analyze by GIS, two years of monitoring and some studies of flood events and river continuum have permit to assess the flux of biogenic material and to build a transport model. The export rates depend of land-use and we assess the annual export rate to 45, 93, 2,850, and 61 kg N-Nitrate km-2 year -1 in forested parcel, deforested parcel, agricultural parcel and urban parcel respectively. The export is more efficiency at the beginning of flood events. However the groundwater may supply high amount of nitrogen in highly agricultural watershed. We have shown that a decrease of 10 % in fertilizer input to farming areas would probably reduce the annual flux of more than 50 %. A study based on hydrology, biogeochemistry and geophysics permit to understand the behavior of a contaminated plume originating from the waste disposal. The ammonium plume flows towards the lagoon at a velocity of 23 m year -1 whereas the chloride plume should flows at 50 m year -1. It highlights an efficiency attenuation of ammonium dispersion due to sorption in soil and nitrification. The plume needs about 100 years to reach the lagoon and nowadays the only way of dispersion is the drainage of contaminated groundwater by the river. This way permits an efficiency nitrification in the hyporheic zone and limits the flux of ammonium. Considering that the input of ammonium from the landfill is balanced by the present day output via the river, the residence time of ammonium in the aquifer is between 7 and 18 years. The integration of estuarine biogeochemistry has been realized for the first time. The survey of biogenic materials and organic matter emphasizes that estuaries are autotrophic at annual scale and decrease the nitrogen continental flux of about 30 %. But in autumn, the mineralization and nutrient recycling is observed. In the Arcachon lagoon, the estuaries have a negligible impact on phosphorus biogeochemistry contrary to the sediment.
16

Lime Treatment of Coal Mine Spoil Impacted Soils in the Huff Run Watershed of Northeast Ohio

Wood, Daniel L., 30 July 2018 (has links)
No description available.

Page generated in 0.0551 seconds