• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • Tagged with
  • 12
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Unravelling the Physiological and Genetic Adaptation of Grafted Pepper under Saline and Hydric Stresses

López Serrano, Lidia 22 February 2021 (has links)
Tesis por compendio / [ES] El pimiento es un cultivo muy importante a nivel mundial, pero es sensible a la falta de agua y a la salinidad. No obstante, se puede mejorar la tolerancia mediante la técnica del injerto. El Instituto Valenciano de Investigaciones Agrarias y la Universidad Politécnica de Valencia han realizado estudios previos para seleccionar accesiones de pimiento tolerantes a ambos estreses, utilizando después una selección de ellos como portainjertos para estudiar los mecanismos fisiológicos de tolerancia y aumentar la rentabilidad de su producción. Sin embargo, después de todos estos estudios, la información disponible es limitada. En este sentido, los objetivos que se han planteado en esta tesis doctoral fueron: i) seleccionar nuevas accesiones tolerantes de pimiento a la salinidad y escasez de agua, para aumentar la disponibilidad de genotipos tolerantes y usarlos en futuros programas de mejora, con el objetivo final de obtener nuevos portainjertos con una tolerancia mejorada; ii) identificar a corto plazo los mecanismos fisiológicos de tolerancia al estrés hídrico de una accesión tolerante (A25) usada como portainjerto; iii) identificar a corto plazo los mecanismos fisiológicos de tolerancia a la salinidad de un nuevo portainjerto híbrido tolerante (NIBER®); iv) encontrar los principales mecanismos moleculares de tolerancia a la salinidad de una accesión tolerante (A25) respecto a una sensible (A6) desde el punto de vista transcriptómico. Una vez realizados estos ensayos, en primer lugar, pudimos relacionar positivamente la capacidad fotosintética y el mantenimiento del crecimiento en plantas tolerantes a estrés hídrico y salino, tanto sin injertar como injertadas; de hecho, basándonos principalmente en esta relación, seleccionamos las accesiones A34 y A31 como tolerantes a estrés salino e hídrico, respectivamente. Además, demostramos que el papel principal de la prolina en los estreses estudiados no está ligado a la bajada de potencial osmótico; sin embargo, se identificaron funciones protectoras de este aminoácido que, junto a otras moléculas antioxidantes como los fenoles, contribuyen en el pimiento a aumentar la tolerancia. Igualmente importante es el peróxido de hidrógeno, que se relacionó con la capacidad antioxidante en pimiento, funcionando como molécula señalizadora en estrés salino. Asimismo, la bajada de ácido abscísico y la modificación de la expresión de genes relacionados han sido también relevantes en condiciones de estrés salino para mantener la apertura estomática y, por consiguiente, el crecimiento en plantas sin injertar e injertadas sobre portainjertos tolerantes. Se demostró también que la limitación del transporte de Na+ a hojas, así como el transporte y acumulación eficiente de K+ en raíces y hojas, son esenciales para alcanzar la homeostasis iónica y por tanto la tolerancia en pimientos injertados sobre portainjertos tolerantes. Para finalizar, el estudio de las rutas moleculares fue una herramienta útil para confirmar el comportamiento fisiológico y agronómico de una accesión de pimiento previamente clasificada como tolerante a la salinidad, descubriendo además nuevos mecanismos no referenciados hasta el momento. Los genes diferencialmente expresados encontrados estaban relacionados con la señalización hormonal, el crecimiento y desarrollo de las plantas, la fotoprotección, la regulación de los transportadores de iones y la detoxificación de ROS. / [CA] El pimentó és un cultiu molt important mundialment, però és sensible a la falta d'aigua i la salinitat. No obstant això, es pot millorar la tolerància mitjançant la tècnica de l'empelt. L'Institut Valencià d'Investigacions Agràries i la Universitat Politècnica de València han fet estudis previs per a seleccionar accessions de pimentó tolerants a tots dos estressos i a continuació, una selecció d'entre elles es va utilitzar per a estudiar els mecanismes fisiològics de tolerància i augmentar la rendibilitat de la seua producció. No obstant això, després de tots aquests experiments, la informació encara és limitada. En aquest sentit, els objectius que s'han plantejat en aquesta tesi doctoral van ser: i) seleccionar noves accessions tolerants de pimentó a la salinitat i la falta d'aigua, per a augmentar la disponibilitat de genotips tolerants i usar-los en futurs programes de millora, amb l'objectiu final d'obtindre nous portaempelts amb una tolerància millorada; ii) identificar a curt termini els mecanismes fisiològics de tolerància a l'estrès hídric d'una accessió tolerant (A25) usada com portaempelt; iii) identificar a curt termini els mecanismes fisiològics de tolerància a la salinitat d'un nou portaempelt híbrid tolerant (NIBER®); iv) trobar els principals mecanismes moleculars de tolerància a la salinitat d'una accessió tolerant (A25) respecte a una sensible (A6) des d'un punt de vista de la transcriptòmica. Després de realitzar aquests assajos, en primer lloc, vam poder relacionar positivament la capacitat fotosintètica i el manteniment del creixement en plantes tolerants a l'estrès hídric i salí, tant sense empeltar com empeltades; de fet, basant-nos principalment en aquesta relació, vam seleccionar les accessions A34 i A31 com tolerants a l'estrès salí i hídric, respectivament. A més a més, vam demostrar que el paper principal de la prolina en els estressos estudiats no està lligat a la baixada de potencial osmòtic; en canvi, es van identificar diferents funcions protectores d'aquest aminoàcid, que, junt a altres molècules antioxidants com els fenols, contribueixen en el pimentó a combatre'ls. Igualment important és el peròxid d'hidrogen, que es va relacionar amb la capacitat antioxidant del pimentó, funcionant com a molècula senyalitzadora a l'estrès salí. Així mateix, la baixada d'àcid abscísic i la modificació de l'expressió de gens relacionats de la seua senyalització han sigut també rellevants en condicions d'estrès salí per a mantindre l'obertura estomàtica i per tant el creixement en plantes sense empeltar i empeltades amb portaempelts tolerants. Es va demostrar també que la limitació del transport de Na+ a les fulles, així com el transport i l'acumulació eficient de K+ a les arrels i les fulles, són essencials per a aconseguir l'homeòstasi iònica i per tant la tolerància en pimentons empeltats damunt portaempelts tolerants. Per concloure, l'estudi de les rutes moleculars va ser un instrument útil per a confirmar el comportament fisiològic i agronòmic d'una accessió de pimentó prèviament classificada com a tolerant, descobrint a més nous mecanismes no trobats fins ara. Els gens diferencialment expressats trobats estaven relacionats amb la senyalització hormonal, el creixement i el desenvolupament de les plantes, la fotoprotecció, la regulació dels transportadors de ions i la detoxificació de ROS. / [EN] Pepper culture is economically very important worldwide, although it is very sensitive to suboptimal conditions of water and high salinity. However, the tolerance to these stresses can be improved by the grafting technique. Previous studies of the Valencian Institute for Agricultural Research and the Polytechnic University of Valencia have been conducted to select pepper accessions that showed tolerance to both stresses, after which a further selection of them was used as rootstocks to find physiological mechanisms of tolerance and to increase its agronomic profit. However, after all these studies, the available information in this regard is still scarce. Therefore, the objectives of this thesis were to: i) screen new tolerant pepper accessions under high salt concentrations and suboptimal water conditions, to increase the availability of tolerant genotypes to be used in future breeding programmes, with the final aim of obtaining new and improved tolerant rootstocks; ii) identify the short-term physiological mechanisms of water stress tolerance of a tolerant accession (A25) used as a rootstock; iii) identify the physiological mechanisms of short-term tolerance to salinity of a new tolerant hybrid rootstock (NIBER®); and iv) find the main molecular pathways of salinity tolerance of a tolerant accession (A25) compared to a sensitive one (A6) by a transcriptomic approach. After conducting these studies, we firstly found a positive relationship between photosynthetic capacity and growth maintenance in plants that were tolerant to water or salt stress, both grafted or ungrafted; indeed, based mainly on this relationship, we selected accessions A34 and A31 as tolerant to salt and water stress, respectively. In addition, we were able to demonstrate that the main role of proline under salinity and water scarcity is not linked herein to the drop in osmotic potential; on the contrary, we identified different protective roles that, together with other antioxidant protective molecules such as phenols, contribute to the tolerance of pepper plants to these environmental stresses. Moreover, hydrogen peroxide, a reactive oxygen species, was found to play important roles in the antioxidant capacity of pepper, working as a signalling molecule under salinity stress. Furthermore, the drop in abscisic acid concentration and its signalling deregulation were also shown to maintain stomatal aperture and thus the growth of the scion when grafted onto tolerant rootstocks and ungrafted accessions under high salt concentration conditions. It was also demonstrated that a limitation of Na+ transport to leaves, as well as a more efficient transport and accumulation of K+ in roots and leaves, are essential to reach ion homeostasis and, thus, tolerance in pepper plants grafted onto tolerant rootstocks. Finally, the study of the molecular pathways of tolerance was a useful tool to confirm the physiological and agronomical behaviour of a pepper accession previously classified as tolerant, although new mechanisms were also found. The differentially expressed genes found were linked to hormonal signalling, plant growth and development, photoprotection, regulation of ion transporters and ROS detoxification. / Quiero agradecer al Instituto Valenciano de Investigaciones Agrarias (IVIA), al Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) y al Ministerio de Ciencia, Innovación y Universidades por darme la oportunidad de disfrutar de la beca predoctoral FPI-INIA (proyectos RTA2013-00022-C02-1 y RTA2017-00030-C02-00) con la que he realizado esta tesis doctoral y he podido aprender tanto todos estos años, asistir a los congresos y realizar las estancias de investigación en el extranjero. / López Serrano, L. (2021). Unravelling the Physiological and Genetic Adaptation of Grafted Pepper under Saline and Hydric Stresses [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/162875 / TESIS / Compendio
12

Study of the Physiological, Metabolomic and Transcriptional Changes Mediated by Rootstocks to Explain the Water Stress Tolerance of Grafted Pepper Plants

Padilla Herrero, Yaiza Gara 20 November 2023 (has links)
Tesis por compendio / [ES] Anteriormente, investigadores del Instituto Valenciano de Investigaciones Agrarias (IVIA) y la Universidad Politécnica de Valencia (UPV) evaluaron la respuesta a estrés hídrico en pimiento injertado para obtener patrones de pimiento que confieran tolerancia a la variedad injertada en estrés hídrico. Los mejores patrones se estudian en campo en condiciones de estrés hídrico a largo plazo. Se patentó el patrón híbrido de pimiento NIBER® tolerante a estrés hídrico, las plantas injertadas sobre NIBER® mostraron menor impacto en la biomasa y el rendimiento en déficit hídrico a largo plazo. La tolerancia de NIBER® se atribuyó al mantenimiento de la actividad fotosintética y una mejor distribución de la biomasa radicular en estrés hídrico. Además, la respuesta sostenida de tolerancia observada en las plantas injertadas sobre NIBER® podría relacionarse con una respuesta rápida en la fase inicial en estrés hídrico, que no se conoce a corto plazo. Así, estudiar la contribución de la respuesta a corto plazo de NIBER® sobre la tolerancia de la variedad injertada en estrés hídrico arrojaría luz en las estrategias de tolerancia en plantas injertadas de pimiento. Además, estudiar la modulación génica, el balance hormonal y el perfil metabólico ampliará el conocimiento sobre los mecanismos moleculares en la respuesta a estrés hídrico. En esta tesis doctoral, observamos que los mecanismos constitutivos en ausencia de estrés hídrico influyen en la respuesta a estrés hídrico en plantas injertadas de pimiento, y que las estrategias constitutivas de NIBER® incluyen la estimulación del sistema antioxidante y la inducción sostenida de ABA. En estrés hídrico, las raíces de NIBER® muestran un menor impacto que las raíces de A10, dado su menor contenido de GSSG por menor daño oxidativo. NIBER® promueve la síntesis de osmolitos en la raíz y vitamina B6 en las hojas de la variedad injertada protegiendo al aparato fotosintético del daño oxidativo producido por el estrés hídrico. Además, la prolina, implicada en la protección del aparato fotosintético, se acumula en las plantas injertadas sobre el híbrido de pimiento H92, capaces de mantener la actividad fotosintética a largo plazo en estrés hídrico. Este rol de la prolina en la tolerancia a estrés hídrico a largo plazo no se observó a corto plazo y podría ser una estrategia tardía. La respuesta al estrés hídrico a corto plazo incluye la regulación del movimiento estomático en NIBER® en la fase inicial de estrés (5 h), evitando el cierre estomático hasta las 48 h mediante cambios en la expresión génica de reguladores negativos de ABA y acuaporinas, seguido del cierre estomático a las 48 h asociado a una síntesis previa de ABA en las raíces y transporte a las hojas. El JA también aumentó en las hojas de la variedad injertada sobre NIBER® (48 h) en estrés hídrico, y se regula por señales a larga distancia desde la raíz, que promueven la síntesis en hoja y el transporte a la raíz, y su resíntesis. El JA está implicado en el cierre estomático y la señalización en estrés, causando la activación de factores de transcripción de respuesta a la deshidratación. En las raíces de NIBER® el ratio auxinas/citoquininas se regula en la respuesta inicial al estrés hídrico, favoreciendo el crecimiento de la raíz respecto al tallo a las 5 h, después aumentando las citoquininas y disminuyendo las auxinas a 24 h y finalmente aumentando las auxinas y reduciendo las citoquininas para una mayor biomasa radicular y capacidad exploratoria. En las hojas de la variedad injertada, NIBER® aumenta los metabolitos protectores clorofila a, ácido esteárico, antocianinas y metabolitos implicados en la síntesis de suberina y cutina. Estos últimos también aumentan en la raíz y tienen un papel antioxidante o bien como constituyentes de barreras celulares controlando los flujos de agua, gases y solutos. Finalmente, el contenido en sirohemo aumenta en la raíz y posiblemente está relacionado con una asimilación del nitrógeno más eficiente. / [CA] Prèviament, investigadors de l'Institut Valencià d'Investigacions Agràries (IVIA) i de la Universitat Politècnica de València (UPV) avaluaren la resposta a estrés hídric en pebrera empeltada per obtenir patrons de pebrera que conferisquen tolerància a la varietat empeltada en estrés hídric. Els millors patrons s'estudien al camp en condicions d'estrés hídric a llarg termini. Es va patentar el patró híbrid de pebrera NIBER® com a patró tolerant, les plants empeltades sobre NIBER® mostraren menor impacte en la biomassa i el rendiment en condicions de dèficit hídric. La tolerància de NIBER® es va atribuir al manteniment de l'activitat fotosintètica i a una millor distribució de la biomassa radicular en estrés hídric. A més, la resposta sostinguda de tolerància observada a les plantes empeltades sobre NIBER® podria relacionar-se amb una resposta ràpida a la fase inicial en estrés hídric, que no s'ha estudiat a curt termini. Així, estudiar la contribució de la resposta a curt termini de NIBER® sobre la tolerància de la varietat empeltada en estrés hídric aclariria els mecanismes de tolerància en plantes empeltades de pebrera. A més, estudiar la modulació gènica, el balanç hormonal i el perfil metabòlic ampliaria el coneixement sobre els mecanismes moleculars en la resposta a estrés hídric. En aquesta tesi doctoral comprovarem que els mecanismes constitutius en absència d'estrés hídric influeixen en la resposta a estrés hídric en plantes empeltades de pebrera i que les estratègies constitutives de NIBER® inclouen l'estimulació del sistema antioxidant i la inducció sostinguda d'ABA. En estrés hídric, les arrels de NIBER® mostraren menor impacte en comparació amb A10, amb un menor contingut de GSSG per menor dany oxidatiu. NIBER® promou la síntesis d'osmòlits a les arrels i de vitamina B6 a les fulles de la varietat empeltada per a protegir a l'aparell fotosintètic del dany oxidatiu per l'estrés hídric. A més, la prolina, implicada en la protecció de l'aparell fotosintètic, s'acumula a les plantes empeltades sobre l'híbrid de pebrera H92, que mantenen l'activitat fotosintètica en condicions d'estrés hídric a llarg termini. Aquest paper de la prolina no es va observar en condicions d'estrés hídric a curt termini i podria ser una estratègia tardana. Les respostes a l'estrés hídric a curt termini inclouen la regulació del moviment estomàtic en NIBER® a la fase inicial d'estrés hídric (5 h), evitant el tancament estomàtic fins a les 48 h mitjançant canvis a l'expressió gènica de reguladors negatius d'ABA i acuaporines, seguit d'un tancament estomàtic a les 48 h associat a una síntesis prèvia d'ABA a les arrels i transport a les fulles. L'JA també va augmentar a les fulles de la varietat empeltada sobre NIBER® a les 48 h en estrés hídric i està regulat per senyals a llarga distància des de les arrels que promouen la síntesis a les fulles i el transport a les arrels i resíntesi. L'JA està implicat al tancament estomàtic i la senyalització en condicions d'estrés, promovent l'activació de factors de transcripció de resposta a la deshidratació. El rati auxines/citoquinines es regula a les arrels de NIBER® a la resposta inicial a l'estrés hídric, primer afavorint el creixement de l'arrel sobre el creixement de la part aèria a les 5 h, després augmentant les citoquinines i disminuint les auxines a les 24 h i finalment augmentant les auxines i reduint les citoquinines per obtenir major biomassa radicular i capacitat exploratòria. A les fulles de la varietat empeltada, NIBER® augmenta el contingut dels metabòlits protectors clorofil·la a, àcid esteàric, antocianines i metabòlits relacionats amb la síntesi de suberina i cutina. Aquests últims també augmenten a les arrels i tenen un paper antioxidant o actuen com a constituents de barreres cel·lulars controlant els fluxos d'aigua, gasos i soluts. Finalment, el contingut en siroheme augmenta a les arrels i possiblement està relacionat amb una assimilació de nitrogen més eficient. / [EN] Previously, research groups at the Valencian Institute of Agricultural Research (IVIA) and the Polytechnic University of Valencia (UPV) evaluated the water stress responses in grafted pepper plants to obtain tolerant pepper rootstocks that make the grafted variety able to overcome water stress. The best rootstocks are studied in the field under long-term water stress conditions. In this way, the NIBER® pepper hybrid rootstock was obtained and patented as water stress-tolerant rootstock, because plants grafted onto NIBER® had a lower impact on biomass and yield under long-term deficit irrigation conditions. NIBER® tolerance response was attributed to sustained photosynthetic activity and improved root biomass distribution under long-term water stress. However, the sustained tolerance response observed in plants grafted onto NIBER® may be linked to prompt responses in the early phase of water stress conditions, but the short-term modulation and behavior of NIBER® water stress response has not been studied. Hence, studying the contribution of the NIBER® short-term water stress responses to tolerance in the grafted variety would shed light into tolerance mechanisms in grafted pepper plants. Moreover, understanding the modulation of the gene expression, phytohormones balance and metabolic profile will also broad the knowledge on the molecular mechanisms implicated in water stress response. In the present doctoral thesis, we stated that the constitutive mechanisms taking place under non-water stress conditions dispose the response to water stress in grafted pepper plants, and NIBER® constitutive strategies include an enhanced ROS detoxification system and maintained ABA induction. When the water stress comes into play, its impact was minor in NIBER® roots in relation to A10 roots, which is reflected in lesser GSSG content from lower oxidative damage. NIBER® promotes the synthesis of osmolytes in roots and vitamin B6 in the grafted variety leaves to protect the plants from the oxidative damage resulting from water stress. Moreover, proline has a role in photosynthetic apparatus protection, because it is accumulated in plants grafted onto pepper hybrid H92, which showed sustained photosynthetic activity under long-term water stress conditions. The proline role in water stress tolerance is not observed under short-term water stress and may constitute a late strategy in grafted pepper plants. Short-term responses to water stress include stomatal movements in NIBER® during early phases (5h) of water stress, starting with the avoidance of stomatal closure up to 48 h by gene expression changes in ABA negative regulators and aquaporins, and followed by stomatal closure at 48 h associated with previous ABA synthesis in roots and transport to leaves. JA is also increased in the leaves of the variety grafted onto NIBER® at 48 h under water stress, and is regulated by long-distance signals from roots that promote its synthesis on leaves and transport to roots and resynthesis. JA is involved in stomatal closure and stress signaling, which leads to dehydration-responsive transcription factors activation. The auxins/cytokinins ratio is also fine-tuned by NIBER® roots during the early water stress response, beginning with promotion of root over shoot growth at 5 h, then increases the cytokinins and reduces the auxins content at 24 h, and finally increases the auxins and reduces the cytokinins content to obtain higher root biomass and greater water exploring ability. In the leaves of the grafted variety, NIBER® increases protective metabolites as chlorophyll a, stearic acid, anthocyanins and suberin and cutin biosynthesis-related metabolites, being the latter also increased in the roots. The mentioned metabolites have an antioxidant role or act as cellular barrier constituents that can control fluxes of water, gases and solutes. Lastly, siroheme increases in roots and it is possibly linked to a more effective nitrogen assimilation. / Padilla Herrero, YG. (2023). Study of the Physiological, Metabolomic and Transcriptional Changes Mediated by Rootstocks to Explain the Water Stress Tolerance of Grafted Pepper Plants [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/199992 / Compendio

Page generated in 0.1255 seconds