• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vibration Suppression Using Smart Materials in the Presence of Temperature Changes

Hegewald, Thomas 27 July 2000 (has links)
Aircraft and satellite structures are exposed to a wide range of temperatures during normal operation cycles. These fluctuations in temperature may result in significant changes of the structural dynamics. Aircraft, automotive, and satellite structures are also subject to various vibration sources. Passive and active vibration suppression techniques have been developed to minimize acoustic noise and fatigue stress damage. Featuring low weight solutions and high performance, active control techniques are becoming increasingly common. Structures with varying dynamics require more sophisticated active control techniques, such as adaptive control. This research uses a special vibration test rig for evaluating the performance of different vibration suppression systems on a representative aircraft panel. The test panel is clamped rigidly in a frame and can be excited in various frequencies with an electromagnetic shaker. To simulate temperature fluctuations the temperature on the panel can be increased up to 65°C (150°F). Smart material based sensors and actuators are used to interface the mechanical system with the electronic controller. The active controller utilizes three positive position feedback (PPF) filters implemented through a digital signal processor board. This research develops two different adaptation methods to perform vibration suppression in the presence of thermally induced frequency changes of the representative panel. To adjust the PPF filter parameters an open-loop adaptation method and an auto-tuning method are investigated. The open-loop adaptation method uses a measurement of the plate temperature and a look-up table with pre-determined parameters to update the filters accordingly. The auto-tuning methods identifies the frequencies of the poles and zeros in the structure's collocated transfer function. From the knowledge of the pole and zero locations the optimal PPF parameters are calculated online. The results show that both adaptation methods are capable of reducing the vibration levels of the test specimen over the temperature range of interest. Three PPF filters with parameter adaptation through temperature measurement achieve magnitude reductions of the resonance peaks as high as 13.6 decibel. Using the auto-tuning method resonance peak reductions up to 17.4 decibel are possible. The pole/zero identification routine proves to detect the frequencies correctly. The average identification error remained at around one percent even in the presence of external disturbances. / Master of Science
2

A Comprehensive Experimental Evaluation of Actively Controlled Piezoceramics with Positive Posistion Feedback for Structural Damping

DeGuilio, Andrew Phillip 13 April 2000 (has links)
This study evaluates the effectiveness of actively controlled piezoceramics with positive position feedback (PPF) for reducing structural vibrations. A comparison is made between active control with PPF and a parallel resistor-inductor (RLC) shunt technique. The primary objectives of this study are to: 1. Explore the feasibility of using smart materials and fiber optics for simultaneous health monitoring and active damping of a representative aircraft panel. 2. Determine how optical fiber sensors may be used to detect vibration modes of an aircraft panel by investigating their use on a representative test article. 3. Determine how piezoelectric patches may be used to detect and counteract fundamental resonances of a representative test article. 4. Determine a control algorithm and hardware system to increase substantially the damping in the fundamental mode of the representative test article over a wide temperature range. 5. Develop a health-monitoring algorithm based on fiber optic sensors to detect impedance changes in a representative test article. 6. Make a comparison between active control with PPF and an RLC shunt technique. To achieve the objectives of this study, a special test rig was used to evaluate the performance of piezoelectric materials (PZTs) for vibration suppression. The test rig was used to rigidly clamp a flat 20-guage steel plate, and then excite the plate in various frequency ranges with an electromagnetic shaker. For each test, a data acquisition system was used to acquire the data to evaluate the performance of each PPF controller. Once the data was obtained, a comparison was made between active damping with PPF and passive damping with the RLC shunt technique. The active damping technique used for this study combined piezoelectric actuators with fiber optic sensors to achieve simultaneous active control and health monitoring of a test plate. The results of the active damping tests show that piezoelectric materials can provide substantial narrowband and broadband frequency reductions, while at the same time detecting damage on the test plate. More specifically, the test results indicate that smart damping materials can decrease the fundamental mode of vibration of the test plate by 23 dB and detect damage such as a loose bolt in the clamping frame, with the addition of only 0.04 lb of PZT on the test plate. The active damping technique reduced the plate vibrations at each mode within the frequency range of interest, with only one-third the amount of piezoelectric material needed for an RLC shunt circuit technique. / Master of Science

Page generated in 0.4367 seconds