• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 16
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The acute effects of weight training on softball throwing velocity

Sheehy, Kevin M Unknown Date (has links)
The short-term enhancement of physical performance known as post-activation potentiation could be exploited in the design of sport-specific training sessions. The purpose of this study was to compare the potentiation of softball throwing velocity following two kinds of resistance-training session: a control session consisting of traditional heavy-load sets, and an experimental "Pmax" session consisting of sets of loads selected to maximise the mean power output during explosive bench presses. Both sessions included plyometric medicine ball chest passes. Eight male softball players of premier grade, with at least 2 yr experience of resistance training, performed the two sessions in a crossover fashion, with 30 min recovery between sessions. Softball throwing velocity was measured with a radar gun immediately before and at 2-min intervals 4-10 min after each session. Percent effects on throwing speed were analyzed via log transformation, and t statistics were used to make magnitude-based inferences with respect to the smallest important change of 2%. The average throwing velocity increased between pre and post tests for both treatments; the average increase was a substantial 2.3% (0.5 to 4.1%). Throwing velocity after Pmax training was a trivial 0.4% slower relative to that after heavy-load training (90% confidence limits -1.2 to 1.9%). There was a greater change in throwing velocity by 10 min post treatment than by 4 min post treatment; the change by 10 min was 5.0% (3.2 to 6.7%) for the Pmax training session and 5.3% (2.1 to 8.6%) for the heavy-load session. These effects were almost certainly beneficial for throwing speed, but the difference between them was unclear (-0.3%; -3.7 to 3.1%). The mean change between 4 and 10 min for both treatments combined was 5.1% (90% confidence limits 3.6 to 6.7%). The short-term enhancement of throwing performance following heavy-load and Pmax training sets has implications for the design of softball warm-up routines. There is also the potential for softball players to use such training to improve their throwing velocity during games.
12

Efeitos da pós ativação neuromuscular induzida por saltos na capacidade anaeróbia em ciclo ergômetro / Effects of postactivation potentiation induced by plyometrics on anaerobic capacity measured on cycle ergometer

Poli, Rodrigo de Araujo Bonetti de 20 August 2018 (has links)
Submitted by Rodrigo de Araujo Bonetti de Poli (rodrigo.arj93@gmail.com) on 2018-09-20T13:26:47Z No. of bitstreams: 2 Dissertação_VFINAL.pdf: 2348774 bytes, checksum: 06c68b262555ddfea42a18851595512f (MD5) ata de defesa0001.pdf: 1297795 bytes, checksum: 6bd39934b5db02b0b7a81951cbc33ba6 (MD5) / Rejected by Lucilene Cordeiro da Silva Messias null (lubiblio@bauru.unesp.br), reason: Solicitamos que realize uma nova submissão seguindo as orientações abaixo: 1 - A ata de defesa deve ser inserida no corpo no texto. Agradecemos a compreensão. on 2018-09-20T19:08:30Z (GMT) / Submitted by Rodrigo de Araujo Bonetti de Poli (rodrigo.arj93@gmail.com) on 2018-10-03T20:14:11Z No. of bitstreams: 1 Dissertação FINAL.pdf: 2546681 bytes, checksum: 7ecb5edb5c025ff32bea79318c106654 (MD5) / Approved for entry into archive by Lucilene Cordeiro da Silva Messias null (lubiblio@bauru.unesp.br) on 2018-10-04T17:34:41Z (GMT) No. of bitstreams: 1 poli_rab_me_bauru.pdf: 2546681 bytes, checksum: 7ecb5edb5c025ff32bea79318c106654 (MD5) / Made available in DSpace on 2018-10-04T17:34:41Z (GMT). No. of bitstreams: 1 poli_rab_me_bauru.pdf: 2546681 bytes, checksum: 7ecb5edb5c025ff32bea79318c106654 (MD5) Previous issue date: 2018-08-20 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / O objetivo do presente estudo foi investigar os efeitos da potenciação pós ativação (PAP) induzida por drop jumps no tempo até a exaustão a 115% da intensidade associada ao consumo máximo de oxigênio (("iV" ) ̇"O" _"2max" ) em ciclo ergômetro, em aspectos neuromusculares da fadiga (central e periférica) e sobre as vias metabólicas não oxidativas (capacidade anaeróbia, via glicolítica e dos fosfagênios). Para isso, o projeto foi dividido em dois estudos independentes. No Estudo A, 14 ciclistas recreacionais do sexo masculino (34 ± 4 anos) foram submetidos a 5 sessões de avaliações. Na primeira sessão realizaram teste incremental até exaustão (TInc), na segunda e terceira avaliações realizaram familiarização ao esforço supramáximo a 115% da ("iV" ) ̇"O" _"2max" , enquanto que na quarta e quinta sessões os participantes realizaram de maneira randomizada o esforço supramáximo a 115% da ("iV" ) ̇"O" _"2max" com e sem PAP (controle). Como esforço indutor da PAP, foram realizados 5 drop jumps (15s de intervalo entre eles) antes do esforço supramáximo. Nas sessões 4 e 5, a fadiga neuromuscular foi avaliada por meio de contrações voluntárias máximas (CVM) de extensão do joelho e estimulação elétrica periférica (PNS) realizadas antes e após o esforço supramáximo. Além disso, a eletromiografia de superfície foi realizada durante o esforço supramáximo para mensuração da roots mean square (EMGRMS) e a frequência mediana (EMGFM) e analisadas de forma estratificada a cada 25% de tempo total de esforço (0-25%, 25-50%, 50-75% e 75-100%). No Estudo B, 16 ciclistas recreacionais do sexo masculino (33 ± 6 anos) realizaram desenho experimental semelhante ao estudo A, entretanto na quarta e quinta sessões, as contribuições dos sistemas metabólicos foram mensuradas pelo componente rápido do excesso de consumo de oxigênio pós exercício (EPOC) (via dos fosfagênios) e pelo delta de lactato (via glicolítica), assumindo a soma das contribuições dessas vias como capacidade anaeróbia (AC[La-]+EPOCrápido), além disso a capacidade anaeróbia também foi mensurada pelo déficit máximo de oxigênio acumulado. Como resultados, no estudo A foi verificado uma melhora do significativa desempenho no esforço supramáximo após a realização da PAP (p=0,02; Δ%=+9,85%). Ambas condições (controle e PAP) apresentaram quedas significativas na força pico medidas durante a CVM e na força evocada pelo estímulo elétrico duplo na musculatura em repouso (p<0,01 e p<0,01, respectivamente) quando comparado o momento pré e pós esforço, indicando uma fadiga periférica causada pelo esforço. Entretanto não houve interação entre as condições (F=4,19; p=0,06 e F=3,03; p=0,09, respectivamente). A EMGRMS e a EMGFM do último quarto de esforço (75-100%) foi significativamente maior que os momentos 0-25%, 25-50%, 50-75%, para ambas as condições (p<0,02), entretanto não houve interação entre grupos (p<0,05). No Estudo B o desempenho no esforço supramáximo foi significativamente maior na condição PAP (p=0,05; Δ%=+7,44%). A contribuição glicolítica e a capacidade anaeróbia mensurada pelo AC[La-]+EPOCrápido foram maiores após a PAP (p=0,002; Δ%= +9,09% e p=0,04; Δ%= +7,75%, respectivamente), entretanto, a contribuição dos fosfagênios não apresentou diferenças significativas entre condições (p=0,35). Portanto, a PAP foi efetiva em melhorar o desempenho em um esforço supramáximo em ciclo ergômetro, tendo sua melhora acompanhada por um aumento da participação glicolítica e da capacidade anaeróbia, além de causar uma “preservação” do aparato neuromuscular durante o esforço para o vasto lateral e o glúteo máximo. / The aim of the present study was investigating the effects of post activation potentiation (PAP) induced by drop jumps in performance during a supramaximal effort at 115% of the intensity associated with maximal oxygen uptake (iV̇ O2max) on a cycle ergometer, also investigating the influence of PAP on neuromuscular fatigue (central and peripheral) and, on the non-oxidative metabolic pathways (anaerobic capacity, glycolytic pathway and phosphagen). Therefore, the project was divided in two independent studies. In Study A, 14 recreational male cyclists (34 ± 4 years) underwent 5 sessions of evaluations, in the first session they performed a graded exercise test (GXT), in the second and third evaluations they performed familiarization to the supramaximal effort to 115% of the iV̇ O2max. In the fourth and fifth sessions, the participants randomly performed the supramaximal effort at 115% of the iV̇ O2max with PAP and without PAP (control). To induce PAP, the volunteers performed 5 drop jumps (15s interval between them) 2 minutes before the supramaximal effort. In sessions 4 and 5, neuromuscular fatigue was assessed by maximal voluntary contractions (CVM) of knee extension with peripheral electrical stimulation (SNP) performed before and after the supramaximal effort. In addition, surface electromyography was performed during the supramaximal effort to measure roots mean square (EMGRMS) and the median frequency (EMGFM) for every 25% of total effort time (0-25%, 25-50%, 50-75% and 75-100% %). In Study B, 14 male recreational cyclists (33 ± 6 years) performed experimental design similar to study A, however in the fourth and fifth session, the contributions of the non-oxydative metabolic systems were measured by the fast component of the excess post-exercise oxygen consumption (EPOC) and the lactate delta (glycolytic pathway), assuming the sum of the contributions of these pathways as anaerobic capacity (AC[La -] + EPOCfast). In addition, the anaerobic capacity was also measured by the maximum accumulated oxygen deficit (MAOD). In study A, an improvement in the supramaximal effort was observed after PAP (p=0.02, Δ%=+9.85%). Both conditions (control and PAP) showed significant decrease in the peak force measured during the CVM and in the force evoked by the double electric stimulus in the resting muscles (p<0.01 and p <0.01, respectively) when compared to the pre and post moments, indicating peripheral fatigue caused by the supramaximal effort. However, ere was no interaction between the conditions (F=4.19, p=0.06 and F=3.03, p=0.09, respectively). The EMGRMS and EMGFM of the last quarter of effort (75- 100%) was significantly higher than the 0-25%, 25-50%, 50-75%, moments for both conditions (p <0.02), however there was no interaction between groups (p<0.05). In Study B, performance on supramaximal effort was significantly higher in the PAP condition (p=0.05, Δ%=+7.44%). The glycolytic contribution and the anaerobic capacity measured by AC[La -] + EPOCfast was higher after PAP (p=0,002; Δ%= +9,09% e p=0,04; Δ%= +7,75%, respectively), however, the contribution of the phosphagen pathway did not show significant differences between conditions (p = 0.35). Therefore, the PAP was effective in improving the performance in a supramáximo effort in cycle ergometer, having its improvement accompanied by an increase in the glycolytic participation and in anaerobic capacity, in addition to causing a "preservation" of the neuromuscular apparatus during the effort for the vastus lateralis and gluteus maximus / FAPESP: 2016/17836-2
13

Lokální a globální efekt sub-maximálního dřepu na post-aktivační zvýšení výstupního svalového výkonu / Local and global effect of sub-maximal squat on post-activation enhancement of muscle power output

Kolinger, Dominik January 2021 (has links)
Title: Local and global effect of sub-maximal squat on post-activation enhancement of muscle power output. Objectives: The aim of this thesis is to determine whether the phenomenon of post-activation performance enhancement (PAPE) manifests locally or globally in terms of improved muscle power output. That is, to determine whether activation of a complex muscle chain will lead to improvements in the muscle power output of other muscle groups and muscle groups included in the activated muscle chain. In this way, to indicate the relationship between global and local physiological mechanisms causing PAPE. Methods: The quasi-experimental method and the method of analysis were used in this work. Eleven basketball players aged 18-28 years completed two measurements in random order. The measurements started with a non-specific warm-up followed by a pre- activation test (pre-CA) to obtain baseline values. Next, the players performed a specific warm-up and activation exercise (CA) in the form of a squat with an intensity of 2 × 4 × 90 % of one repetition maximum (OM) with a rest interval of 3 min. After the activation exercise, post-CA values were measured at minutes 5, 8 and 11 on force plates and at minutes 6, 9 and 12 on an isokinetic dynamometer (IKD). Pre-CA and post-CA test of the protocol one...
14

Vliv tonizace v rozcvičení na výkon u florbalistů / Effect of toning in warm-up on performance of floorball players

Králíčková, Kateřina January 2019 (has links)
Title: Effect of toning in warm-up on performance of floorball players Objectives: Find out the influence of toning in warm-up before performance in exercises aimed at determining the action speed, explosive power of legs and agility of floorball players. Methods: A total of 20 floorball player aged 17 - 27 years participated in two measurements, one week apart. On the test day each proband passed one of two types of warm-up, non-toning warm-up and toning warm-up, and the next test day passed the second type of warm-up. The warm-up was follwed by three tests, the 20 m run, the jump from place and the shuttle run. For analysis of results was used statistics methods. Results: The first hypothesis was confirmed for the group of probands aged 17-19 years in the overall performance, 10 m run, 20 m run and jump from place. The second hypothesis was confirmed in the overall performance for all probands, then for the group of probands aged 17-19 years and for the group of probands aged 20-24 years. The second hypothesis was confirmed in the 10 and 20 m run for all probands, in the 10 m, 20 m run and in the jump from the place for the group of probands aged 17-19 years, in the 10 and 20 m run for group of probands aged 20-24 years. According to Cohen's d the results of the 10 and 20 m run were the most...
15

Silová tonizace v softballu žen / Power tonisation in women's softball

Pfeifer, Jan January 2021 (has links)
Title: The force toning in women's softball Objectives: The aim of this study was to demonstrate post-activation potentiation (PAP) following the muscle toning during the strenght training. The toning effect on upper limb explosive force was analyzed following application of two different degrees of resistence. Methods: In this study, we applied randomized selection for the subject to minimize the effect of possible ambiguities such as gender, training status, and player maturity. A homo- -geneous group of well-trained women with the most developed technical response was accepted. (Czech national team, Women's softball). We used the contrast method, where the data were analyzed to determine the effect of different resistance degrees and a fixed rest interval for the strength-dynamic exercise. It is a sticking out of medicine ball in sitting position, which was performed by women of the highest player level. The measurement was processed by using the direct method of dynamic efforts. We compared the explosive force with a medicine ball sticking forward in relation to the distance of the sticking medicine ball by the tested person. Results: The measurement has shown that the PAP generated by toning protocol has a sig- -nificant impact on enhancing the response in explosive drills. The exercise for...
16

Predição do desempenho em 10 km por meio de variáveis metabólicas e mecânicas: influência do nível de desempenho e da potencialização pós-ativação

Del Rosso, Sebastián 28 February 2018 (has links)
Submitted by Sara Ribeiro (sara.ribeiro@ucb.br) on 2018-08-08T17:35:32Z No. of bitstreams: 1 SebastianDelRossoDissertacao2018.pdf: 1818866 bytes, checksum: 3274a8646557f8e415e970e9bbe7a015 (MD5) / Approved for entry into archive by Sara Ribeiro (sara.ribeiro@ucb.br) on 2018-08-08T17:35:47Z (GMT) No. of bitstreams: 1 SebastianDelRossoDissertacao2018.pdf: 1818866 bytes, checksum: 3274a8646557f8e415e970e9bbe7a015 (MD5) / Made available in DSpace on 2018-08-08T17:35:47Z (GMT). No. of bitstreams: 1 SebastianDelRossoDissertacao2018.pdf: 1818866 bytes, checksum: 3274a8646557f8e415e970e9bbe7a015 (MD5) Previous issue date: 2018-02-28 / The main goal of the present study was to identify the main determinants influencing and thus explaining pacing and performance during self-paced 10 km running time trial and develop prediction equations including metabolic/respiratory and neuromuscular variables. Twenty-seven well-trained runners (age = 26,4 ± 6,5 years, training experience = 7,4 ± 5,9 years, training volume = 89,1 ± 39,1 km·week-1, VO2max = 62,3 ± 4,5 mL·kg-1·min-1) completed three testing sessions: During the first session, body composition and mechanical variables (concentric peak velocity, PV; time to peak velocity, TPV; peak force, PF; and peak power, PP) in the half-squat (AG) and loaded squat jump (SSC) were measured. The second testing session was dedicated to assessing metabolic variables [VO2max, ventilatory thresholds (VT1 and VT2), cost of running (CR) and maximal speed (SMAX)] and vertical jump (CMJ) potentiation; while during the third session a 10 km self-paced time trial was carried out. Also, before and after (0, 3, 6, and 9 min) the 10 km, athletes completed 2 CMJ for measuring mechanical variables [eccentric displacement (DE), mean eccentric and concentric velocity (VME, VMC), eccentric and concentric peak velocity (PVE, PVC)]. Pacing was defined as the time (T10km) or speed (S10km) every 1000 m, and analysis of those factors influencing the 10 km performance was carried by means of hierarchic multiple regression, whit the inclusion of all available variables. In addition, regression analyses were performed to develop prediction equation for T10km. Cluster analyses were carried out to evaluate the effects of performance levels [high performance group, GAD; low performance group (GBD)] and jumping potentiation (potentiation group, GP; non-potentiation group, GNP). For the whole sample, the final model including SMAX, CR, o a AGVP, Δ3-Pre CMJPVE (m·s-1), HRmax (bpm) and SSCPF (N) was statistically significant; r2 = 0,91, F(6-26) = 35,64, P < 0,001, EES = 0,76, r2ADJUSTED = 0,89; while the prediction model included the following variables: SMAX, CR and AGVP [r2 = 0,75; F(3-26) = 22,52; P < 0,001; EES = 1,23]. For the performance groups, there were significant main simple effects for time [F(2-52) = 12,20, P<0,001), η2 = 0,32] and group [F(1-25) = 49,91; P<0,001, η2 = 0,66] and also differences in the explaining variables for T10km: GAD [SMAX; SSCPF, HRMEAN, CV10km e Post-0min CMJPVE, F(5-9) = 266,06; P <0,001; SSE = 0,09 min; r2ADJUSTED = 0,99]; GBD [VT2-%VO2max, Δ6-Pre CMJEPV, CR; F(4-18) = 33,16; P <0,001, EES = 0,045 min; r2ADJUSTED = 0,88]. Furthermore, different prediction equations were found for each group: GAD – [T10km (min) = 68,65 – (1,084 × SMAX) – (0,008 × SSCPF) + (0,083 × AGCARGA); r2 = 0,98]; GBD - T10km (min) = 44,75 – (1,05× SMAX) + (0,17×VT2-%VO2max) + (1,89 × CMJVME) – (0,061 × Age); r2 = 0,89]. For jump potentiation groups there were significant differences only in the last 400 m and RPE (GNP = 8,36 ± 1,6 vs. GP = 6,8 ± 1,7; P = 0,03). Also, jump potentiation correlated with the final 400 m time in the whole sample (r = -0.42; P = 0,031) and with RPE for the GAD group (r = -0,75; P = 0,032). In conclusion, the results of the present study suggest that mechanical factors are significant for endurance runners given that explain part of the variance in the T10km while allowed for performance prediction. Moreover, performance level appears to be related to neuromuscular differences influencing pacing whereas jump potentiation likely affects effort perception. / O objetivo do presente estudo foi analisar os diversos fatores que podem influenciar e por tanto explicar o desempenho em uma prova de corrida de 10 km assim como também em subsegmentos dos 10 km, e predizer desempenho a partir de variáveis metabólicas/respiratórias e neuromusculares. Para tal fim, 27 corredores bem treinados (idade = 26,4 ± 6,5 anos, experiência de treinamento = 7,4 ± 5,9 anos, volume de treinamento = 89,1 ± 39,1 km·semana-1, VO2max = 62,3 ± 4,5 mL·kg-1·min-1) completaram três sessões de avaliação: A primeira sessão foi dedicada à determinação das variáveis mecânicas (pico de velocidade concêntrica, PV; tempo até o pico de velocidade, TPV; pico de força, PF e pico de potência, PP) nos exercícios de médio agachamento (AG) e salto com sobrecarga (SSC) e das variáveis associadas à composição corporal; durante a segunda sessão se avaliaram variáveis metabólicas [VO2max, limiares ventilatórios (VT1, primer limiar ventilatório, VT2, segundo limiar ventilatório), custo energético da corrida (CR) e velocidade máxima (SMAX)] conjuntamente com a potencialização no salto vertical (CMJ); e durante a terceira sessão se registrou o desempenho em uma prova simulada de 10 km (T10km) com monitoramento continuo da velocidade (GPS) e da frequência cardíaca (FC). Antes e depois (0, 3, 6 e 9 min) dos 10 km os atletas completaram 2 saltos verticais (CMJ) para à avaliação das variáveis mecânicas associadas ao salto [deslocamento excêntrico (DE), velocidade média excêntrica e concêntrica (VME, VMC), pico de velocidade excêntrica e concêntrica (PVE, PVC)]. O ritmo de corrida foi definido como o tempo ou velocidade a cada 1000 m, e para as análises dos fatores implicados na variância do desempenho em 10 km foi realizada uma análise de regressão múltipla hierárquica utilizando todas as variáveis disponíveis. Além disso, análises de regressão foram completadas para determinar equações de predição do T10km com variáveis independentes das registradas durante a prova. Entanto que analises por conglomerados foram utilizados para analisar os efeitos do nível de desempenho (grupo de alto desempenho, GAD; grupo de baixo desempenho, GBD) e da potencialização do salto vertical (grupo que exibiu potencialização, GP; grupo que não potencializou, GNP). Para o total de 27 atletas o modelo final que incluiu a SMAX (km·h-1), a CR (mL·kg-1·m-1), o a AGVP (m·s-1), o Δ3-Pre CMJPVE (m·s-1), a FCmax (bpm) e a SSCPF (N) foi estatisticamente significativo; r2 = 0,91, F(6-26) = 35,64, P < 0,001, EES = 0,76, r2ajustado = 0,89. Por outra parte, o modelo para a predição do T10km, com variáveis independentes da prova de 10 km, incluiu a SMAX, o CR e AGVP [r2 = 0,75; F(3-26) = 22,52; P < 0,001; EES = 1,23]. As analises por grupo de desempenho indicaram efeitos principais do tempo (Tempos parciais, Laps) [F(2-52) = 12,20, P<0,001), η2 = 0,32] e do grupo [F(1-25) = 49,91; P<0,001, η2 = 0,66] assim como diferencias nas variáveis que explicaram a variância no T10km: para GAD [SMAX; SSCPF, FCMÉDIA, CV10km e Pós-0min CMJPVE, F(5-9) = 266,06; P <0,001; SSE = 0,09 min; r2AJUSTADO = 0,99]; GBD [VT2-%VO2max, o Δ6-Pre CMJEPV, CR; F(4-18) = 33,16; P <0,001, EES = 0,045 min; r2AJUSTADO = 0,88]. Adicionalmente, acharam-se equações diferentes para a predição do T10km em cada um dos grupos: GAD – [T10km (min) = 68,65 – (1,084 × SMAX) – (0,008 × SSCPF) + (0,083 × AGCARGA); r2 = 0,98]; GBD - T10km (min) = 44,75 – (1,05× SMAX) + (0,17×VT2-%VO2max) + (1,89 × CMJVME) – (0,061 × Idade); r2 = 0,89]. Enquanto aos grupos de potencialização, se acharam diferenças significativas entre os grupos na velocidade atingida só no segmento de 400 m finais e na PSE final (GNP = 8,36 ± 1,6 vs. GP = 6,8 ± 1,7; P = 0,03). Ademais, na amostra completa a potencialização correlacionou com o tempo nos 400 m finais (r = -0.42; P = 0,031) e no grupo GAD, correlacionou com a PSE (r = -0,75; P = 0,032). Em conclusão, os resultados deste estudo sugerem que as variáveis mecânicas são importantes para corredores de 10 km já que permitem explicar a variância e predizer o desempenho. Além disso, o nível de desempenho parece estar associado com diferencias neuromusculares que influenciam o ritmo de corrida, entanto que a potencialização do salto vertical parece afeitar sobre tudo a percepção do esforço.

Page generated in 0.148 seconds