• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bimodal Gate Oxide Breakdown in Sub-100 nm CMOS Technology

Rezaee, Leila 08 December 2008 (has links)
In the last three decades, the electronic industry has registered a tremendous progress. The continuous and aggressive downsizing of the transistor feature sizes (CMOS scaling) has been the main driver of the astonishing growth and advancement of microelectronic industry. Currently, the CMOS scaling is almost reaching its limits. The gate oxide is now only a few atomic layers thick, and this extremely thin oxide causes a huge leakage current through the oxide. Therefore, a further reduction of the gate oxide thickness is extremely difficult and new materials with higher dielectric constant are being explored. However, the phenomena of oxide breakdown and reliability are still serious issues in these thin oxides. Oxide breakdown exhibits a soft breakdown behavior at low voltages, and this is posing as one of the most crucial reliability issues for scaling of the ultra-thin oxides. In addition, the stress-induced leakage current (SILC) due to oxide has emerged as a scaling problem for the non-volatile memory technologies. In this dissertation, a percolation modeling approach is introduced to study and understand the dramatic changes in the conductivity of a disordered medium. Two different simulation methods of percolative conduction, the site and bond percolation, are studied here. These are used in simulating the post-breakdown conduction inside the oxide. Adopting a Monte-Carlo method, oxide breakdown is modeled using a 2-D percolation theory. The breakdown statistics and post-breakdown characteristics of the oxide are computed using this model. In this work, the effects of different physical parameters, such as dimension and the applied stress are studied. The simulation results show that a thinning of oxide layer and increasing the oxide area result in softening of breakdown. It is observed that the breakdown statistics appear to follow Weibull characteristics. As revealed by simulations, the Weibull slope changes linearly with oxide thickness, while not having a significant change when the area is varied and when the amount of the applied stress is varied. It is shown that the simulation results are well correlated with the experimental data reported in the literature. In this thesis, studying the conduction through the oxide using percolation model, it was discovered that a critical or a quasi-critical phenomenon occurs depending on the oxide dimensions. The criticality of the phase-transition results in a hard breakdown while the soft breakdown occurs due to a quasi-critical nature of percolation for ultra-thin oxides. In the later part of the thesis, a quantum percolation model is studied in order to explain and model the stress induced leakage current. It is explained that due to the wave nature of electrons, the SILC can be modeled as a tunneling path through the stressed oxide with the smaller tunneling threshold compared to the virgin oxide. In addition to the percolation model, a Markov chain theory is introduced to simulate the movement of electron as a random walk inside the oxide, and the breakdown is simulated using this random-walk of electron through the accumulated traps inside the oxide. It is shown that the trapping-detrapping of electrons results in an electrical noise in the post-breakdown current having 1/f noise characteristics. Using simulation of a resistor network with Markov theory, the conductance of the oxide is computed. An analytical study of a 2-D site percolation system is conducted using recursive methods and useful closed-form expressions are derived for specialized networks.
2

Bimodal Gate Oxide Breakdown in Sub-100 nm CMOS Technology

Rezaee, Leila 08 December 2008 (has links)
In the last three decades, the electronic industry has registered a tremendous progress. The continuous and aggressive downsizing of the transistor feature sizes (CMOS scaling) has been the main driver of the astonishing growth and advancement of microelectronic industry. Currently, the CMOS scaling is almost reaching its limits. The gate oxide is now only a few atomic layers thick, and this extremely thin oxide causes a huge leakage current through the oxide. Therefore, a further reduction of the gate oxide thickness is extremely difficult and new materials with higher dielectric constant are being explored. However, the phenomena of oxide breakdown and reliability are still serious issues in these thin oxides. Oxide breakdown exhibits a soft breakdown behavior at low voltages, and this is posing as one of the most crucial reliability issues for scaling of the ultra-thin oxides. In addition, the stress-induced leakage current (SILC) due to oxide has emerged as a scaling problem for the non-volatile memory technologies. In this dissertation, a percolation modeling approach is introduced to study and understand the dramatic changes in the conductivity of a disordered medium. Two different simulation methods of percolative conduction, the site and bond percolation, are studied here. These are used in simulating the post-breakdown conduction inside the oxide. Adopting a Monte-Carlo method, oxide breakdown is modeled using a 2-D percolation theory. The breakdown statistics and post-breakdown characteristics of the oxide are computed using this model. In this work, the effects of different physical parameters, such as dimension and the applied stress are studied. The simulation results show that a thinning of oxide layer and increasing the oxide area result in softening of breakdown. It is observed that the breakdown statistics appear to follow Weibull characteristics. As revealed by simulations, the Weibull slope changes linearly with oxide thickness, while not having a significant change when the area is varied and when the amount of the applied stress is varied. It is shown that the simulation results are well correlated with the experimental data reported in the literature. In this thesis, studying the conduction through the oxide using percolation model, it was discovered that a critical or a quasi-critical phenomenon occurs depending on the oxide dimensions. The criticality of the phase-transition results in a hard breakdown while the soft breakdown occurs due to a quasi-critical nature of percolation for ultra-thin oxides. In the later part of the thesis, a quantum percolation model is studied in order to explain and model the stress induced leakage current. It is explained that due to the wave nature of electrons, the SILC can be modeled as a tunneling path through the stressed oxide with the smaller tunneling threshold compared to the virgin oxide. In addition to the percolation model, a Markov chain theory is introduced to simulate the movement of electron as a random walk inside the oxide, and the breakdown is simulated using this random-walk of electron through the accumulated traps inside the oxide. It is shown that the trapping-detrapping of electrons results in an electrical noise in the post-breakdown current having 1/f noise characteristics. Using simulation of a resistor network with Markov theory, the conductance of the oxide is computed. An analytical study of a 2-D site percolation system is conducted using recursive methods and useful closed-form expressions are derived for specialized networks.
3

Pre and post breakdwon modeling of high-k dielectrics regarding antifuse and OxRAM non-volatile memories / Modélisation pre et post claquage de diélectriques à haute permittivité dans le cadres des mémoires non volatiles antifuse et OxRAM

Benoist, Antoine 27 January 2017 (has links)
Les mémoires non volatiles intégrées représentent une part importante du marché des semi-conducteurs. Bien qu'il s'adresse à de nombreuses applications différentes, ce type de mémoire fait face à des problèmes pour poursuivre la réduction continue de la résolution des technologies CMOS. En effet, l'introduction récente de high-k et de métal pour la grille des transistors menace la compétitivité de la solution Flash. En conséquence, de nombreuses solutions émergentes sont étudiées. L'Antifuse dans le cadre des mémoires OTP est utilisée pour l'identification de puces, la configuration de circuits, la réparation de système ou le stockage de données sécurisées. La programmation Antifuse repose sur la dégradation de l'oxyde de grille de son condensateur sous haute tension. Des travaux antérieurs ont déjà apporté quelques connaissances sur les mécanismes physiques impliqués sur des technologies à oxyde de grille SiO2. De nouveaux défis découlent de l'introduction des nouveaux matériaux de grille. Un examen complet est nécessaire sur les mécanismes de dégradation des oxydes impliqués dans la programmation Antifuse. L'utilisation intensive de la haute tension suggère également d'étendre notre connaissance sur la fiabilité dans cette gamme de tension. Les états pré et post-claquage de l'oxyde de grille sous des mécanismes à haute tension sont donc étudiés dans ce manuscrit se concentrant sur les technologies CMOS les plus avancées. Une loi en puissance type TDDB a été étendue vers les hautes tensions pour être utilisée comme un modèle de temps de programmation Antifuse. L'extension de la fiabilité TDDB nous donne également un élément clé pour modéliser la durée de vie du transistor de sélection. Des paramètres de programmation tels que l'amplitude de la tension, la compliance du courant ou la température sont également étudiés et leur impact sur le rendement en courant de lecture est abordé. Cette étude nous permet de rétrécir agressivement la surface globale de la cellule sans perte de performance ni de dégradation de la fiabilité. Un processus de caractérisation Antifuse est proposé pour être retravaillé et un modèle de programmation de tension-température-dépendante est inventé. Ce manuscrit a également mis l'accent sur la modélisation de courant de cellule programmée comme la fuite d’un oxyde de grille post-claquage. Un modèle compact MOSFET dégradé est proposé et comparé à l'état de l’art. Un bon accord est trouvé pour s'adapter à la large gamme de caractérisations I (V) de la cellule programmée. L'activation de ce modèle dans un environnement de design nous a permis de simuler la dispersion des distributions de courants de cellules programmées au niveau de la taille du produit à l'aide de runs Monte-Carlo. Enfin, cette thèse s'achève autour d'une étude d'investigation OxRAM comme une solution émergente. En combinant le dispositif Antifuse avec le mécanisme de commutation résistif de l'OxRAM, une solution hybride est proposée en perspective. / Embedded Non Volatile Memories represent a significant part of the semiconductor market. While it addresses many different applications, this type of memory faces issues to keep the CMOS scaling down roadmap. Indeed, the recent introduction of high-k and metal for the CMOS gate is threatening the Flash’s competitiveness. As a consequence many emerging solutions are being. The Antifuse as part of the OTP memories is fully CMOS compliant, Antifuse memories are used for Chip ID, chip configuration, system repairing or secured data storage to say the least. The Antifuse programming relies on the gate oxide breakdown of its capacitor under high voltage. Previous work already brought some knowledge about the physical mechanisms involved but mainly on SiO2 gate oxide technologies. New challenges arise from the introduction of the new gate materials. A full review is needed about the oxide breakdown mechanisms involved in the Antifuse programming. The extensive use of high voltage also suggests to extend our knowledge about reliability within this voltage range. Pre and post gate oxide breakdown under high voltage mechanisms are then deeply investigated in this manuscript focusing on the most advanced CMOS technologies. Fowler Nordheim Tunneling has been confirmed as the main mechanism responsible for the gate oxide leakage conduction under high voltage during the wearout phase even-though defect contribution has been evidenced to mainly contribute under low voltage , e.g. the virgin Antifuse leakage current. A TDDB based power law has been extended toward high voltage to be used as a robust Antifuse programming time model. Extending the TDDB reliability under high electric field also gives us key element to model the selection MOSFET time to failure. Programming parameters such as voltage amplitude, current compliance or temperature are also investigated and their impact on the Read Current Yield are tackled. This study allows us to aggressively shrink the bitcell overall area without losing performance nor degrading the reliability. This study also reveals a worst case scenario for the programming parameters when temperature is very low. As a consequence, the early Antifuse characterization process is proposed to be rework and a programming voltage-temperature-dependent solution is invented. This manuscript also focused on the Antifuse programmed cell current modeling as gate oxide post-breakdown conduction. A remaining MOSFET compact model is proposed and compared to the state of the art. Good agreement is found to fit the wide range of read current. Enabling this model within a CAD environment has allowed us to simulate the Read Current Yield dispersion at product size level using Monte-Carlo runs. Finally, this thesis wraps up around an OxRAM investigation study as a serious emerging eNVM solution. Combining the Antifuse device with the resistive switching mechanism of the OxRAM, a hybrid solution is proposed as a perspective.

Page generated in 0.0622 seconds