• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 127
  • 34
  • 17
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 243
  • 243
  • 118
  • 104
  • 68
  • 47
  • 44
  • 43
  • 36
  • 34
  • 34
  • 31
  • 31
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

A Characterization of the Role of Post-translational Modification in Transcriptional Regulation by the Histone Variant H2A.Z

Draker, Ryan 11 December 2012 (has links)
H2A.Z is an essential histone variant that has multiple chromosomal functions. One such role is transcriptional regulation. However, its role in this process is complex since it has been reported to function both as a repressor and activator. Earlier work in our lab showed that H2A.Z can be post-translationally modified with monoubiquitin (H2A.Zub1) and this form of H2A.Z is linked to transcriptional silencing. We further predicted that changes in the H2A.Z ubiquitylation status directly modulated its function in transcription. Furthermore, H2A.Z-containing nucleosomes possess a unique set of post-translational modifications (PTMs), compared to H2A nucleosomes, many of which are linked to transcriptional activation. The central aim of this thesis was to characterize the role of PTMs on H2A.Z nucleosomes in transcriptional regulation. To this end, I have provided the first evidence linking H2A.Z deubiquitylation to transcriptional activation. I demonstrated that ubiquitin specific protease 10 (USP10) is a deubiquitylase that targets H2A.Z in vitro and in vivo. Moreover, I found that both H2A.Z and USP10 are required for activation of androgen-receptor (AR)-regulated genes, and that USP10 regulates the levels of H2A.Zub1 at these genes. To understand how H2A.Z engages downstream effector proteins, in the nucleosome context, we used a mass spectrometry approach to identify H2A.Z-nucleosome-interacting proteins. Many of the identified proteins contained conserved structural motifs that bind post-translationally modified histones. For example, we found that Brd2 contains tandem bromodomains that engage H2A.Z nucleosomes through acetylated H4 residues. To investigate the biological relevance of this interaction, I present evidence that Brd2 is recruited to AR-regulated genes in a manner dependent on H2A.Z and the bromodomains of Brd2. Consistent with this observation, chemical inhibition of Brd2 recruitment greatly inhibited AR-regulated gene expression. Collectively, these studies have defined how H2A.Z mediates transcriptional regulation through multiple mechanisms and pathways.
72

Effective Strategies for Improving Peptide Identification with Tandem Mass Spectrometry

Han, Xi January 2011 (has links)
Tandem mass spectrometry (MS/MS) has been routinely used to identify peptides from protein mixtures in the field of proteomics. However, only about 30% to 40% of current MS/MS spectra can be identified, while many of them remain unassigned, even though they are of reasonable quality. The ubiquitous presence of post-translational modifications (PTMs) is one of the reasons for current low spectral identification rate. In order to identify post-translationally modified peptides, most existing software requires the specification of a few possible modifications. However, such knowledge of possible modifications is not always available. In this thesis, we describe a new algorithm for identifying modified peptides without requiring users to specify the possible modifications before the search routine; instead, all modifications from the Unimod database are considered. Meanwhile, several new techniques are employed to avoid the exponential growth of the search space, as well as to control the false discoveries due to this unrestricted search approach. A software tool, PeaksPTM, has been developed and it has already achieved a stronger performance than competitive tools for unrestricted identification of post-translationally modified peptides. Another important reason for the failure of the search tools is the inaccurate mass or charge state measurement of the precursor peptide ion. In this thesis, we study the precursor mono-isotopic mass and charge determination problem, and propose an algorithm to correct precursor ion mass error by assessing the isotopic features in its parent MS spectrum. The algorithm has been tested on two annotated data sets and achieved almost 100 percent accuracy. Furthermore, we have studied a more complicated problem, the MS/MS preprocessing problem, and propose a spectrum deconvolution algorithm. Experiments were provided to compare its performance with other existing software.
73

Proteomic analysis of Arabidopsis thaliana

Granlund, Irene January 2008 (has links)
A complete proteome analysis of the chloroplast stroma, using 2D-PAGE, from spinach and Arabidopsis was performed. To improve the identification of proteins a computer program named SPECLUST was used. In SPECLUST, peak masses that are similar in many spots cluster together because they originate from the same protein with different locations on the gel. Within this program peaks in a cluster can be investigated in detail by peaks-in-common, and the unidentified masses that differ between spots in a cluster could be caused by protein modifications, which was analysed further by MS/MS. The thylakoid is an internal membrane system in the chloroplast where protein complexes involved in photosynthesis are housed. Enclosed in the thylakoid membrane is the chloroplast lumen, with a proteome estimated to contain 80-200 different proteins. Because the chloroplast lumen is close to the photosynthesis machinery in the plant, one can expect that the lumen proteome will change depending on if the plant is dark or light adapted. DIGE analysis of lumen proteins found that 15 lumen proteins show increased relative abundance in light-adapted plants. In addition co-expression analysis of lumen protein genes suggests that the lumen protein genes are uniformly transcriptionally regulated, not only by light but in a general manner. Plastocyanin is one of the proteins involved in the electron transfer in photosynthesis. Two homologous plastocyanin isoforms are encoded by the genes PETE1 and PETE2 in the nuclear genome of Arabidopsis, where PETE2 is the more abundant isoform. Knockout mutants of each of the plastocyanin isoforms shows that a 90% reduction of plastocyanin levels affects rates of photosynthesis and growth only slightly. A corresponding over-expression of plastocyanin in each of the two knockout mutants results in essentially wild-type photosynthetic performance. Reduced plastocyanin levels make the plant sensitive to Cu stress and therefore plastocyanin plays a major role as a Cu sink. A by-product of photosynthesis is hydrogen peroxide, which may be harmful for the plant. The discovery that an abundant protein found in the chloroplast lumen, TL29, shared sequence homology to Ascorbate Peroxidase (APX) was therefore of interest. We have evidence that TL29 is not an APX protein; it lacks the heme-binding active site and shows no activity. TL29 is located in the grana region and is electrostaticaly attached to the thylakoid membrane. It has four isoforms, with different pIs, both in the native and denatured form. It has no interaction with ascorbate, when compared to raAPX1. TL29 has two cysteine residues and one of them seems to have redox-regulated function, proposing that it may interact with other proteins close to PSII.
74

Proximity Ligation Assay for High Performance Protein Analysis in Medicine

Gu, Gucci Jijuan January 2012 (has links)
High quality reagents are preconditions for high performance protein analyses. But despite progress in some techniques, e.g. mass spectrometry, there is still a lack of affinity-based detection techniques with enhanced precision, specificity, and sensitivity. Building on the concept of multiple affinity recognition reactions and signal amplification, a proximity ligation assay (PLA) was developed as a molecular tool for analyzing proteins and their post-translational modification and interactions. PLA enhanced the analysis of protein expression levels and post-translational modifications in western blotting (Paper I), which had elevated sensitivity and specificity, and an ability to investigate protein phosphorylation. A general and straightforward method was established for the functionalization of affinity reagents through adding DNA strands to protein domains for protein analysis in medicine (Paper II). A method for protein domain-mediated conjugation was developed to simplify the use of recombinant affinity reagents, such as designed ankyrin repeat protein (DARPin), in DNA-mediated protein analyses. Alzheimer’s disease (AD) is characterized by progressive cognitive decline and memory impairment, and amyloid-beta plaques and neurofibrillary tangles (NFT) in the brain are clinical hallmarks of the disease. In order to understand the mechanisms underlying the formation of NFT, in situ PLA was used to explore the role of microtubule affinity related kinase 2 (MARK2) in phosphorylating tau protein during the pathological progress of AD (Paper III). The analyses of roles of MARK proteins 1-4 in phosphorylating tau protein in cells and in post-mortem human brains were performed in Paper IV. The focus of this thesis was the study of post-translational modifications and interactions of proteins in medicine. Procedures for high performance protein analysis in western blotting via proximity ligation were developed, and a functionalization method for recombinant affinity reagents in DNA-mediated protein analysis was established. These and other techniques were used to investigate the roles of tau-phosphorylating MARK family proteins in AD.
75

Development of a novel liquid chromatography based tool to study post-translational modifications

Lam, Wing Kai Edgar 11 1900 (has links)
There are many tools available for the study of post-translational modifications. The majority of these tools is specific towards the individual modification and involves separation of modified proteins from non-modified ones. The drawback of using a modification specific method is that there is a lack of flexibility in its usage for other modifications. The goal of these studies was to investigate the possibility of obtaining a similar separation effect by fractionating post-translationally modified proteins based on the physical properties of proteins. The post-translational modification chosen to be the basis of this study was the O-GlcNAc modification. Using the C2C12 mouse myoblast cell line, it was determined that the optimal conditions for producing lysates containing increased yields of O-GlcNAc modified proteins was to treat differentiated C2C12 cells with 10nM insulin, 12g/L glucose and 2mM of the O-GlcNAcase inhibitor Streptozotocin for 24 hours. Using the optimized lysis buffer, it was shown that protein separation by surface charge using standard anion exchange separation did not provide enough resolution or material to obtain any identifications of modified proteins. However, when a chromatofocusing method which separates proteins on the basis of their isoelectric points was used, a separation scheme with larger capacity and higher resolution was possible. Using this separation method followed by gel electrophoresis of individual fractions, proteins which are potentially O-GlcNAc modified were identified by mass spectrometry. It was evident from the number of protein bands observed per fraction on the Coomassie stained gels and the number of proteins identified per protein band by mass spectrometry that further reduction in sample complexity was required to assist in the positive identification of O-GlcNAc modified proteins. Among the identified proteins, 32 percent were metabolic proteins, 21 percent were protein processing proteins, 16 percent were structural proteins and the remainder a mix of other proteins. Unfortunately, it was not possible to validate the presence or absence of the O-GlcNAc modification on these proteins using available methodologies such as immunoprecipitation. As such, further work is required to optimize the separation strategy and to verify the usefulness of this separation strategy in identifying O-GlcNAc/post-translationally modified proteins.
76

Analysis of post-translational modification sites in the aryl hydrocarbon receptor

Keyur Dave Unknown Date (has links)
The dioxin receptor (DR), a transcription factor with basic-helix-loop-helix/PERARNTSIM (bHLH/PAS) homology domains, is activated by toxic xenobiotic ligands leading to severe physiological disturbances most of which are due to deregulation of receptor’s central role in normal development. Activation mechanisms of DR in the presence of exogenous or endogenous ligands are poorly understood. Elucidation of factors involved in the activation of the receptor would assist not only in development of an optimal measure for risk assessment of levels of common environmental pollutants but also in providing novel targets for therapeutic interventions. Posttranslational modifications (PTMs) play an indispensable role in all major signal transduction pathways by increasing the inventory of chemical modifications beyond those already present in the side-chains of common amino acids. Thus, by simple on/off or complex patterns generated by these PTMs, they control a myriad of different biological outcomes. Numerous studies that have suggested an important role of posttranslational modifications in DR activation has prompted a search in this direction, however, apart from phosphorylations at Ser36 and Ser68 no other PTM sites are known. Advanced mass spectrometry (MS)-based characterisation of PTMs is an established technique that can comprehensively provide an accurate cast of all PTM variants and their locations on a protein. This thesis reports the first MS-based comprehensive characterisation of all PTM sites of the purified latent DR and preliminary analysis of identified PTM sites of the activated DR in response to developmental signals (suspension-activated DR) and signals leading to toxic outcomes (ligand-activated DR). The PTM map of the latent DR revealed from this study comprises of 25 phosphorylations, 4 monomethyl-lysines, 2 dimethyl-lysines, 1 O-acetyl-serine and 2 O-sulfono-serines. Most of the phosphorylations and other PTMs were present in the conserved regions of the protein. Investigation of the activated samples of the receptor revealed loss of the above repertoire of modifications and possible presence of some rarer modifications such as O-acetyl-serines in suspension-activated instead of O-sulfonations and pyrophosphorylation at Ser716 in both suspension- as well as ligand-activated DR. A comprehensive mutagenesis study is in progress to understand the functional consequence of each of these modification sites and unravel the functional posttranslational system in DR signalling.
77

Analysis of post-translational modification sites in the aryl hydrocarbon receptor

Keyur Dave Unknown Date (has links)
The dioxin receptor (DR), a transcription factor with basic-helix-loop-helix/PERARNTSIM (bHLH/PAS) homology domains, is activated by toxic xenobiotic ligands leading to severe physiological disturbances most of which are due to deregulation of receptor’s central role in normal development. Activation mechanisms of DR in the presence of exogenous or endogenous ligands are poorly understood. Elucidation of factors involved in the activation of the receptor would assist not only in development of an optimal measure for risk assessment of levels of common environmental pollutants but also in providing novel targets for therapeutic interventions. Posttranslational modifications (PTMs) play an indispensable role in all major signal transduction pathways by increasing the inventory of chemical modifications beyond those already present in the side-chains of common amino acids. Thus, by simple on/off or complex patterns generated by these PTMs, they control a myriad of different biological outcomes. Numerous studies that have suggested an important role of posttranslational modifications in DR activation has prompted a search in this direction, however, apart from phosphorylations at Ser36 and Ser68 no other PTM sites are known. Advanced mass spectrometry (MS)-based characterisation of PTMs is an established technique that can comprehensively provide an accurate cast of all PTM variants and their locations on a protein. This thesis reports the first MS-based comprehensive characterisation of all PTM sites of the purified latent DR and preliminary analysis of identified PTM sites of the activated DR in response to developmental signals (suspension-activated DR) and signals leading to toxic outcomes (ligand-activated DR). The PTM map of the latent DR revealed from this study comprises of 25 phosphorylations, 4 monomethyl-lysines, 2 dimethyl-lysines, 1 O-acetyl-serine and 2 O-sulfono-serines. Most of the phosphorylations and other PTMs were present in the conserved regions of the protein. Investigation of the activated samples of the receptor revealed loss of the above repertoire of modifications and possible presence of some rarer modifications such as O-acetyl-serines in suspension-activated instead of O-sulfonations and pyrophosphorylation at Ser716 in both suspension- as well as ligand-activated DR. A comprehensive mutagenesis study is in progress to understand the functional consequence of each of these modification sites and unravel the functional posttranslational system in DR signalling.
78

Lipoprotein lipase : mechanism for adaptation of activity to the nutritional state /

Wu, Gengshu, January 2004 (has links)
Diss. (sammanfattning) Umeå : Univ., 2004. / Härtill 4 uppsatser.
79

Beta-secretase transgenic mice effects of BACE1 and BACE2 on Alzheimer's disease pathogenesis /

Chiocco, Matthew J. January 2005 (has links)
Thesis (Ph. D.)--Case Western Reserve University, 2005. / [School of Medicine] Department of Genetics. Includes bibliographical references. Available online via OhioLINK's ETD Center.
80

The SR protein 9G8 and the Wilms' tumor suppressor protein WT1 promote translation of mRNAs with retained introns

Swartz, Jennifer Elizabeth. January 2007 (has links)
Thesis (Ph. D.)--University of Virginia, 2008. / Title from title page. Includes bibliographical references. Also available online through Digital Dissertations.

Page generated in 0.1482 seconds