• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 14
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 43
  • 43
  • 37
  • 18
  • 14
  • 12
  • 12
  • 11
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Epiphytic yeasts isolated from apple leaves to control of gray and blue mold fruit rots of apple

Falconi, Cesar E. 14 June 1996 (has links)
Eight phylloplane yeasts were isolated from backyard apple trees in Corvallis, OR. Yeast isolates were classified to genus or species level. All isolates were tested in vitro for antagonistic activity against the postharvest pathogens Botrytis cinerea and Penicillium expansum. Of these isolates, Aureobasidium pullulans, Sporobolomyces roseus Rhodotorula sp., consistently reduced mycelial growth of B. cinerea and P. expansum in nutrient yeast dextrose agar (pH 4.5 or 7.0) incubated for 8 or 30 days at 24 or 1 C, respectively. These three yeasts also were evaluated for their ability to suppress spore germination of B. cinerea and P. expansum in a gradient of apple juice concentrations and to suppress development of gray and blue mold lesions in inoculated fruits of Golden Delicious apple. Germination of B. cinerea and P. expansum was reduced significantly (P���0.05) when incubated with the yeast isolates in 100 or 50% apple juice, but not in 0, 1 or 10% apple juice. S. roseus and A. pullulans reduced significantly (P���0.05) the size of gray mold lesions in wounded fruit stored at 5 C and 24 C by 63 to 72 and 81 to 90%, respectively, when compared to the nontreated control. Size of blue mold lesions in fruit stored at 5 and 24 C also were reduced significantly (P���0.05) by 66 to 38 and 74 to 63%, respectively, when pre-treated with S. roseus and A. pullulans. In general, fruit rot suppression by some yeasts isolated in this study was similar in magnitude to suppression obtained by Cryptococcus laurentii isolate 87-108, a yeast with commercial potential to suppress postharvest rots of pome fruits. Pretreatment of apple wounds with washed cells of A. pullulans, S. roseus, Rhodotorula sp., resulted in disease suppression, but treatment of wounds with cell-free culture supernatant of these isolates did not affect lesion development. Population size of A. pullulans, S. roseus, and C. laurentii increased in apple wounds incubated at 5 or 24 C for up to 25 days, indicating that they colonized the wound site. Data collected in this study support the hypothesis that yeast isolates antagonize fruit pathogens by competing for nutrients in wounds on fruit surfaces. The isolates of A. pullulans and S. roseus show promise for commercial development. / Graduation date: 1997
32

Ultra-low temperature shipping and cold chain management of 'fuerte' avocados (Persea americana Mill.) grown in the KwaZulu-Natal Midlands.

Lutge, Andre. 15 November 2013 (has links)
‘Fuerte’ makes up 25% of the avocados exported from South Africa to European markets and requires shipping periods of up to 28 days and a correctly managed cold chain. A temperature of 5.5°C and expensive CA and 1-MCP treatments are currently used to delay ripening over this lengthy cold chain; however, fruit still appear on the European market showing signs of softening and physiological disorders. Increased competition on the global market and the disadvantage of a particularly long distance to the European market has challenged the South African export industry. These challenges have necessitated improved road and sea transport logistics, co-ordination with producing countries which supply fruit to European markets over similar periods as South Africa, and research into ultra-low temperature storage to possibly enable future access to new lucrative markets in the USA, China and Japan. It is also known that there are various ‘weak links’ in this cold chain and that cold chain breaks are detrimental to fruit quality, but further research into the negative effects of these cold chain breaks at ultra-low temperatures was needed. Thus, the objective of the study was to determine the potential for shipping ‘Fuerte’ avocados at temperatures of 2°C as well as determining the effects of cold chain breaks on fruit quality, throughout the growing season and possibly for an extended period of 56 days. ‘Fuerte’ avocados were harvested at three different maturity stages reflecting early-, mid- and late-season fruit, with moisture contents of 74%, 68% and 63%, respectively. Fruit were stored at 2°C or 5.5°C, treated with 1-MCP and waxed. Additionally cold chain breaks (24 hour delay and break at 14 days) were implemented. Fruit softening, mass loss, days-to-ripening, external and internal quality as well as antioxidant levels and total sugar levels were determined. The first aim was to determine whether a lower than currently used storage temperature could be a successful alternative to 1-MCP use. A storage temperature of 2°C provided good internal quality as well as reduced mass loss and fruit softening, which is related to the slightly reduced use of C7 sugars at 2°C compared with 5.5°C. Although the overall occurrence of external chilling injury was relatively low, 2°C storage caused a notably higher occurrence of external chilling injury than 5.5°C storage, particularly early in the season, but extended the days-to-ripening. Unfortunately, no correlation between the anti-oxidants in the exocarp and external damage was found. Waxing significantly reduced the external damage on fruit stored at 2°C, so much so, that the treatment combinations of ‘2°C, no 1-MCP, waxed’ showed no external chilling injury throughout the season. Further, waxing fruit at 2°C could eliminate the need for 1-MCP, delivering a product of the required shelf-life and quality. Best results were achieved for mid-season fruit stored at 2°C. Late-season fruit would potentially be the most profitable to store at this low temperature, however, body rots (anthracnose and stem-end rot) were more common in the late-season. Storage at 2°C can therefore maintain the internal quality over a storage period of 28 days and be a potential alternative to 1-MCP use as the season progresses. The effect of cold chain breaks on fruit quality was then investigated and showed that both a delay and a break in the cold chain increased mass loss and fruit softening, reduced days-to-ripening and increased external chilling injury, especially early in the season. Water loss was the main contributor to the decreased fruit quality which resulted from the delay in cooling, increasing external damage significantly, particularly early in the season. The break at 14 days had a marked effect on physiological activity of fruit during storage, seen mainly in the increased metabolic activity, resulting in increased fruit softening and water loss during storage and a decrease in C7 sugars and thus shelf-life, particularly for fruit stored at 5.5°C. Importantly, 1-MCP use and storage at 2°C reduced the effects of cold chain breaks with respect to fruit softening, however, lowering the storage temperature had a greater negating effect than 1-MCP and could be a successful alternative to the use of 1-MCP. The internal quality throughout the experiment was very good, with few internal disorders and no significant treatment effects on internal quality and C7 sugar concentrations. Overall, a break in the cold chain, before and during cold storage, resulted in a marked reduction in fruit quality. The storage temperature of 5.5°C should not be used for a 56 day storage period as it resulted in significant fruit softening during storage, even when 1-MCP was used, and resulted in significantly more external chilling injury in the mid- and late-season than at 2°C. Storage of 1-MCP treated, waxed fruit at 2°C, resulted in the best shelf-life and fruit quality, particularly mid-season fruit which had negligible external chilling injury and 100% sound fruit. Early-season fruit suffered significant external chilling injury at 2°C and late-season fruit had the highest body-rots and internal disorders at this storage temperature. Although mid-season fruit could be successfully stored at 2°C for 56 days, the use of a 56 day storage period is not recommended as a practical storage period, due to the high risk of external damage, particularly if maturity levels are not optimum and trees and fruit are not of the highest quality. Overall this thesis has shown that 1-MCP treatment can play an important role early in the season when fruit are susceptible to external damage, however, storage at 2°C results in good quality fruit and, when used in conjunction with waxing, appears to be a viable alternative to the use of 1-MCP, particularly later in the season. Further, the negative effects of cold chain breaks on fruit quality have been demonstrated and, importantly, the storage temperature of 2°C negates the fruit softening effects of these breaks, even if 1-MCP is not used. / Thesis (M.Sc.Agric.)-University of KwaZulu-Natal, Pietermaritzburg, 2011.
33

Development of a sulphur free litchi storage protocol using sealed polypropylene bags.

Archibald, Alison Joy. January 2006 (has links)
The use of sulphur as a method of postharvest disease control and colour retention in litchis is soon to be restricted by the European Union. It is therefore essential that new postharvest treatments and packaging techniques be developed in order to retain internal and external fruit qualities and thus allow for export. Good litchi quality is not only important for the export market but also for use on the local market. In this study, alternative methods for postharvest quality control were investigated with the aim of extending the litchi storage life to 40 days under modified storage. Packaging the fruit in polypropylene bags significantly decreased fruit water loss and resulted in an increase in shelf life, as determined by red colour and overall rind appearance. There was no distinct advantage of amodified atmosphere. The use of a punnet, lined with absorbent sheeting and placed within the sealed polypropylene bag, further improved the shelf life. The absorbent sheeting reduced the amount of free water and resulted in little pathogen infection, while the punnet was effective in protecting the fruit from damage. It was notable that most water loss occurred within the first 10 days of storage and that the majority would actually take place during the cooling phase. A hydrocooling technique was therefore investigated and was found to not significantly decrease water loss, possibly due to not hydrocooling the fruit for a long enough period of time. Temperature management was extremely important for both colour retention and pathogen control. It was found that treatments stored at 5.5QC showed better colour retention after the 40 days storage than the 1QC storage treatment. The higher storage temperature, however, enhances the potential for postharvest diseases. Three compounds, namely ISR 2000, 'Biosave' and F10, were tested for pathogen control. 'Biosave' showed the best results with the most effective concentration being 100 mill water and good pathogen control occurred when storage was at 10 C. Polyphenol oxidase (PPO) activity in the litchi rind was evaluated as it is thought to be closely related to browning of litchi fruit, probably due to the degradation of phenolics by PPO. Brown fruit had a high PPO activity whilst red fruit had much lower activity. It was also shown that PPO activity decrease over storage time, possibly due to product inhibition of the enzyme. The internal quality of the fruit was determined using the T88: acid ratio of the pulp, as it is well correlated to mean eating quality. For fruit to have excellent taste, it must have a T88: acid ratio of between 31:1 and 60:1. All the fruit had a ratio that met this criterion and would therefore ensure good eating quality. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.
34

Effect of methyl jasmonate and salicyclic acid on chilling injury of 'eureka' lemons.

Siboza, Xolani Irvin. January 2010 (has links)
South Africa is the second largest exporter of citrus fruit in the world. There has recently emerged a strong demand for lemons in the world market due to their nutritional value, culinary and non-culinary uses. During exportation, fruit are subjected to low temperature (-0.5°C) for varying periods of time as an obligatory quarantine treatment. However, lemons are sensitive to low temperatures and easily develop chilling injury during this obligatory quarantine treatment. This has become a major limitation to the expansion of South Africa’s lemon industry. Postharvest treatments with methyl jasmonate (MJ) and / or salicylic acid (SA) have been successfully used in horticultural crops to reduce chilling injury. A similar treatment was applied to ‘Eureka’ lemons. During the 2008 harvest season, postharvest fruit were either dipped in 10 or 50 μM MJ or 2 or 2.5 mM SA solutions. A control or no dip treatment was also applied. Three replicates of 15 fruits per treatment were used. During the 2009 harvest season the following postharvest treatments were applied as dips: 10 μM MJ, 2 mM SA, 10 μM MJ & 2 mM SA, 1 μM MJ & 0.2 mM SA, or 0.1 μM MJ & 0.02 mM SA solutions. A control or no dip treatment was also applied. Three replicates of 15 fruits per treatment were used. Subsequently fruit were stored at -0.5ºC for 0, 7, 14, 21, 28, 35, and 42 days, before being transferred to room temperature (25°C) for 7 days where after chilling injury was rated. Treatments with 10 μM MJ and / or 2 mM SA reduced chilling injury symptoms in lemons harvested during the 2009 season. Although no visual symptoms of chilling injury were observed during the 2008 harvest season, treatments with 10 μM MJ and / or 2 mM SA reduced fruit mass loss, delayed the occurrence of stress symptoms such as lipid peroxidation and suppressed accumulation of ROS in the rind. Treatments with 10 μM MJ and / or 2 mM SA were more effective in inducing antioxidant capacity and other defence compounds such as phenolics, ascorbic acid, carbohydrates and chilling injury responses such as accumulation of proline in the rind. This may have increased the chilling tolerance of fruit during the cold storage. Therefore, this study revealed that MJ and SA have the potential to reduce and delay symptoms of chilling injury in lemons. This lead to the suggestion that both, MJ and SA dips should be further tested as treatments to mitigate chilling injury in lemons. Future studies should focus more on preventing the injury itself or preventing the primary event of chilling injury. This could probably reduce the chances of secondary events to take place. / Thesis (M.Sc.Agric.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.
35

Effect of systemic resistance inducers applied pre- and postharvest for the development of a potential control of colletotrichum Gloeosporioides on Persea Americana (Mill.) CV 'Fuerte'.

Bosse, Ronelle Joy. January 2012 (has links)
Avocados are one of the major food sources in tropical and subtropical regions and are an important horticultural crop in South Africa. Avocados are exported over long distances and may have storage times of up to 30 or more days at temperatures of about 5.5oC. This procedure increases the risk of poor fruit quality, including physiological disorders, early softening and postharvest disease incidence. A major component of the postharvest diseases is Anthracnose caused by Colletotrichum gloeosporioides. Anthracnose infects unripe fruit and once infected, the fungus remains dormant in the fruit until ripening begins. This leads to a problem for producers and packers, as the presence of the disease cannot be detected on the pack line, and fruit is not removed. Anthracnose control is normally done through pre-harvest treatment with copper-based fungicides. While effective such treatment needs to be repeated frequently, resulting in copper residues on the avocados. The study was conducted to investigate the effects of phosphoric acid and potassium silicate on known antifungal compounds and critical enzymes of the pathways elemental for systemic resistance inducers, so as to evaluate the potential for using them as alternatives to or in conjunction with, copper fungicides in the control of Anthracnose in avocado fruit. The study included storage temperature and time variations, to take account of the logistics in shipping avocado fruit to distant markets. Pre- and postharvest applications of phosphoric acid and potassium silicate were used, and after harvest, fruit were either ripened at room temperature (22oC) without storage or stored for 28 days at temperatures of 5.5oC or 2oC before analysis. Concentrations of phenolics, activity of the enzyme phenylalanine ammonia lyase (PAL) and a known antifungal diene were determined in the fruit exocarp. Pre-harvest treatments of phosphoric acid showed that the highest phenolic concentration was found in fruit harvested 14 days after application for fruit stored at room temperature. For fruit stored at 5.5°C it was seen that as fruit softened, phenolic concentrations increased compared with hard fruit immediately after storage, with the highest increase noted for fruit harvested 7 days after application. When comparing the three storage temperatures, phenolic concentrations were enhanced most when fruit was stored at 2°C. Postharvest treatments showed a significant increase in phenolic concentrations for potassium silicate treated fruit stored at room temperature and 2°C when determined immediately after storage. Fruit stored at 5.5°C showed an increase in phenolic concentrations as it became softer. When considering PAL enzyme activity, it was found that postharvest treatments of both potassium silicate and phosphoric acid influenced enzyme activity, with potassium silicate having greater effects. Similarly, an increase in PAL activity was noted in the pre-harvest phosphoric acid treatment harvested 14 days after application for fruit ripened immediately as well as fruit stored at 5.5°C. Fruit stored at 2°C showed the highest PAL activity for fruit harvested 7 days after application. No results were obtained in the analysis of antifungal compounds for both pre- and postharvest treatments. However, it is suggested that the antifungal diene could follow similar trends to those found for phenolics. It is concluded that applications of both phosphoric acid and potassium silicate do create changes in phenolic concentrations and the activity of the enzyme PAL which is involved in the synthesis of phenolic compounds known to possess antifungal properties. It is therefore possible that phosphoric acid and potassium silicate may be used as part of an integrated programme for Anthracnose control, and should be tested as potential alternatives for high volume copper-based fungicides. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.
36

Effects of harvest stages, postharvest pre-treatments and storage duration on the quality and shelf life of minimally processed litchi

Nhleko, Zanele Veronica January 2022 (has links)
Thesis (M.Sc. Agriculture (Horticulture)) -- University of Limpopo, 2022 / The most common postharvest limitation of litchi fruit is pericarp browning, which leads to consumer rejection of the solid fruit in the market even when the edible portion is not affected. Previously, sulphur dioxide (SO2) fumigation was used to control the browning and extend shelf life of litchi fruit. However, SO2 fumigation leaves undesirable residues, alters the fruit taste and may results in health hazards for consumers. An alternative method, namely, minimal processing was used to control pericarp browning and curb postharvest losses in litchi. Litchi fruit were harvested at two maturity stages (early harvest; 120 days after full bloom (DAFB), late harvest; 130 DAFB), peeled and immersed for two (2) minutes in three (3) solutions that represented treatments, namely 1) 1% citric acid 2) 1% calcium lactate and 3) a combination of citric acid and calcium lactate both at 1% measure. The untreated arils were dipped in sodium hypochloride (NaOCl) solution for 1 minute and represented the control samples. The treated arils were packed in sterilized clamshell containers and stored at 1±0.5°C and 95% relative humidity for 12 days, then held at 10±0.5°C for 2 days for shelf life study. As a result of the interaction effect of harvest stages and postharvest pre-treatments, least mass loss percentage (1.32%), juice leakage (1.8 ml per 120 g of fruit) and pH (4.18) was observed in litchi arils harvested late and treated with 1% citric acid only under cold storage. Under shelf life study, H2 control samples presented lower mass loss (2.8%) and juice leakage (4.2 ml per 120 g of fruit). At the end of cold storage, litchi arils harvested early and treated with 1% citric acid combined with 1% calcium lactate presented better tissue strength (56.0 N) and radical scavenging activity (36.6 mmol AAE/mL), while those harvested late presented higher ascorbic acid content (72.9 µg/mL), least microbial population and total colour change (3.5). However, at the end of shelf life storage, litchi arils harvested early and treated with 1% citric acid combined with 1% calcium lactate presented lower (3.1) total change in colour. Overall, harvesting the fruit late and treating with citric acid alone or combined with calcium lactate showed the potential of maintaining better aril quality with least microbial population for up to 12 days under 1±0.5°C storage, whereas harvesteing the fruit early and treating with citric acid alone or combined with calcium lactate showed the potential of maintaining better aril quality under shelf life storage. Keywords: Litchi chinesis sonn; calcium lactate; citric acid; maturity; fresh-cut. / Agricultural Research Council (ARC), National Research Foundation (NRF) and Agri-Seta
37

The potential of putrescine postharvest dips and cold storage temperature on fruit quality and shelf-life of 'solo' papaya (carica papaya L).

Mabunda, Eulenda Tinyiko January 2022 (has links)
Thesis (M.Sc. (Horticulture)) -- University of Limpopo, 2022 / Cold storage is commonly used to prolong papaya fruit storability. Furthermore, the optimal recommended storage temperature is below 10℃ for export and distant market. However, chilling injury (CI) occurs at 10℃ or lower during prolonged cold storage. This condition hampered consumer acceptance, resulting in economic losses for producers and exporters. Therefore, the study aimed to investigate the potential of postharvest polyamine dips and storage conditions to improve the quality and shelf life of ‘Solo’ papaya fruit. The experiment was conducted as 4 x 2 factorial arranged in a completely randomised design (CRD) with eight replications. The fruits were treated with putrescine (PUT) (0 (control), 1, 2 and 3 mM) before storage for 21 days at 7.5 and 13℃ plus 5 days storage at ambient temperature. Additionally, the PUT effect on quality attributes and shelf-life were studied. The results showed that physiological and pathological disorders increased with progressive storage, irrespective of storage temperature. However, PUT treatment reduced the incidence of chilling injury and anthracnose at both 7.5 and 13℃. Additionally, the interaction of treatment and cold storage temperature significantly affected ‘Solo’ papaya fruit physical and biochemical quality attributes. Furthermore, treatment with 2 and 3 mM PUT concentration reduced changes in colour, mass, firmness, TA, and TSS compared to control. In conclusion, postharvest PUT improved ‘Solo’ papaya fruit quality and prolonged shelf-life. / AgriSETA (Agricultural Sector Training Authority)
38

Integrated use of yeast, hot water and potassium silicate treatments for the control of postharvest green mould of citrus and litchi.

Abraham, Abraha Okbasillasie. January 2010 (has links)
There is a growing recognition globally that many agrochemicals are hazardous to humans, animals and the environment. Therefore, there is a need to substitute these chemical products with biological and physical treatments, and to change agronomic practices in order to control pests and diseases in agriculture. The primary objective of this thesis was to develop and test in laboratory, field and commercial packhouses trials as alternative control measures against green mould of citrus (caused by Penicillium digitatum Pers: Fr. Sacc) and Penicillium molds of litchi (caused by several Penicillium). A South African isolate of P. digitatum, isolated from an infected orange fruit, was found to be resistant to imazalil (the standard postharvest fungicide used in South Africa). Sixty yeast and 92 Bacillus strains were screened for their antagonistic activity against this isolate of P. digitatum. None of the yeasts or Bacillus isolates produced a curative action against P. digitatum on oranges. However, yeast Isolate B13 provided excellent preventative control of P. digitatum, superior to all the Bacillus isolates, when it was applied to citrus fruit prior to artificial inoculation with P. digitatum. Electron microscopy showed that yeast Isolate B13 inhibited conidial germination of P. digitatum. For the control of P. digitatum pre-harvest, trees were sprayed with a yeast, Isolate B13, a few months or a few days before harvest. However, this treatment alone proved to be ineffective in providing preventative control of green mould on Valencia oranges. For the control of P. digitatum preharvest, trees were treated with potassium silicate for a full season. Regular potassium silicate treatments resulted in a significant preventative control of P. digitatum infection on both navel and Valencia oranges. Treatment of Eureka lemons with potassium silicate as a postharvest treatment for the control of P. digitatum resulted in reduced disease lesion diameters when applied preventatively or curatively. Electron microscopy showed that potassium silicate inhibited germination of P. digitatum conidia and growth of its mycelium. Hot-water dip treatment at 50-58°C for 60-180 seconds (in increments of 15 seconds), significantly reduced infection development in inoculated wounds of Valencia oranges compared with control fruit treated with tap water, without causing any rind damage. The integration of the yeast, a hot water dip and potassium silicate pre-and postharvest applications provided control of P. digitatum control in multiple packhouse trials. The control achieved by the yeast Isolate B13 or hot-water, and potassium silicate in the packhouse alone was superior or equivalent to that provided by imazalil. A similar study was also carried out to determine possible control measures for Penicillium sp. on litchis. In this study, a total of 23 yeast and 13 Bacillus isolates were obtained from litchi fruit surfaces. Ten yeast and 10 Bacillus isolates that had shown good efficacy against P. digitatum of citrus were added to these for screening against Penicillium sp. of litchis. None of the yeasts or Bacillus isolates produced a curative action against Penicillium sp. infection on litchis. However, several yeast isolates (YL4, YL10, YLH and B13) resulted in reduced severity of the pathogen, when applied preventatively, compared with an untreated control. The yeast isolates were superior to all the Bacillus isolates, when applied to litchis prior to artificial inoculation by Penicillium infection on litchis. Potassium silicate as a postharvest treatment for the control of the pathogen caused reduced lesion diameters when applied preventatively or curatively to naturally infected litchis. The results presented in this thesis highlight the use of biological, physical and agronomic practices singly or in combination as an alternative control strategy against citrus postharvest green mould. This thesis also provides an insight into expanding these strategies, partly or fully, for the control of other postharvest Penicillium infections using litchi as an example. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.
39

Source and identity of insect contaminants in export consignments of table grapes

Pryke, James Stephen 03 1900 (has links)
Thesis (MScAgric (Conservation Ecology and Entomology)--University of Stellenbosch, 2005. / The South African table grape industry exports approximately 60% of the table grapes produced. A major threat to the export of these grapes is the phytosanitary risk that insect pests pose. This study was conducted in the Hex River Valley, South Africa’s main table grape producing area. The aim of this study was to reduce the number of phytosanitary rejections from insects on table grapes from the Hex River Valley. Thus the main objectives of the study were to identify the most important phytosanitary pests in the Hex River Valley; the determination of their presence in the vineyards with possible means to control them; and to assess the possibility of using postharvest quarantine treatments in the Western Cape. Further aims were to determine the effect of different colour harvesting crates on the phytosanitary pests and whether the phytosanitary pests infested the grapes via packhouses. The most important phytosanitary pests of table grapes of the Hex River Valley are in order of importance: Phlyctinus callosus (Schonherr) (Coleoptera: Curculionidae), Epichoristodes acerbella Walker (Lepidoptera: Tortricidae), Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae), Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), Gonocephalum simplex Fabricius (Coleoptera: Tenebrionidae) and Dysdercus fasciatus Signoret (Hemiptera: Pyrrhocoridae). 12.71% of rejections were from species that were not identified, while a further 33% of the rejections were possibly identified incorrectly. Phytosanitary control of P. callosus appeared to be far more effective using Plantex® than pesticides. Weather conditions appeared to affect the abundance of P. callosus, especially warm weather, while bunches harboured less P. callosus later in the day. Control of E. acerbella with DiPel® (Bacillus thuringiensis var. kurstaki) appeared to at least reduce the population within the vineyards, and so its use is recommended. P. ficus is a non-actionable species for the USA market and is not listed as a phytosanitary pest for the Israeli market and so should not be causing any phytosanitary rejections. C. capitata appeared to be successfully controlled by the fruit fly sterile release program and the cold sterilisation it currently undergoes. G. simplex caused few rejections. It is still unclear where this pest infests the grapes, as it was found in both the field and in the packhouses. D. fasciatus occurrence on grapes was probably accidental. It was shown that picking during the early and late parts of the day, when this species was less active, reduced its occurrence in bunches. Gryllus bimaculatus (De Geer) (Orthoptera: Gryllidae), although not reported as a reason for rejections in table grapes for the past two years, was an actionable species that was present in large numbers in the Hex River Valley. There was a strong correlation between increasing quantities of pesticides and higher abundances of G. bimaculatus. It appeared to be an indicator of the overuse of pesticides. Results of this study showed that infestation by the phytosanitary pests came from neighbouring vineyards. The creation of barriers to prevent the movement of these pests between vineyards is suggested. Methyl bromide is the most commonly used postharvest quarantine treatment. Owing to the ozone-depleting properties of methyl bromide, it is scheduled to be outlawed in many countries from 2005. Alternative postharvest treatments are irradiation, extreme temperatures, forced air, vapour-heat treatments and the use of controlled atmospheres. Irradiation treatments appeared to control the pests at doses that do not damage the grapes. Controlled atmosphere treatments also have a high probability of success, although more research is required on this treatment. Low temperature treatments are relatively cheap as most exported fruit already undergoes cold storage, and appears to control species in the families Pseudococcidae and Tephritidae, although further research is required for the other pest. Colour or location of the harvesting crates in the vineyards appeared not to influence the number of phytosanitary pests collected, as they were not attracted to these crates.
40

The extent of Aflatoxin and Aspergillus section Flavi, Penicillium spp. and Rhizopus spp. contamination of peanuts from households in western Kenya and the causative factors of contamination.

Mutegi, Charity Kawira. January 2010 (has links)
Peanuts contribute significantly to food security in western Kenya due to their high nutritional value and cash crop potential. However, the crop is highly susceptible to aflatoxin contamination. Yet little information is available on the extent of contamination in the region. This study explores the level and extent of contamination of peanuts by aflatoxins, Aspergillus section Flavi, Rhizopus and Penicillium spp. in western Kenya. A survey of 769 households was carried out in the Busia and Homa bay districts of Kenya. Information on peanut pre- and post-harvest practices was collected through person-to-person interviews. Aflatoxin levels of samples collected from each household were determined by indirect competitive ELISA method. Isolation of Aspergillus section Flavi, Penicillium and Rhizopus spp. was done on Modified Dichloran Rose Bengal (MDRB) agar, while identification of specific fungal species was done on Czapek yeast extract agar (CYA). Screening isolates of A. flavus and A. parasiticus for aflatoxin production was done in high sucrose yeast extract (YES) liquid medium, and the aflatoxin types identified on TLC plates, using analytical grades of aflatoxin B1, B2, G1 and G2 as reference standards. Common household preparation techniques (roasting, making peanut paste and boiling peanuts) were evaluated for effectiveness in reducing aflatoxin levels in peanuts. The boiling procedure was modified to test the effect of magadi (locally available salt used mainly to soften legumes, vegetables or maize while cooking), ammonium persulphate and sodium hypochlorite during soaking. Magadi, sodium bicarbonate and locally prepared ash was subsequently used to boil the nuts after soaking. Aflatoxin levels ranged from zero to 7525 ìg/kg. Most samples were safe to consume, based on the European Union and Kenya Bureau of Standards tolerance levels, with 63.7 per cent of all samples having undetectable levels, and only 7.54 per cent being contaminated based on KEBS standards. Peanuts from the Busia district, which has more of Lower Midland 1 (mean annual rainfall of 1600-1800 mm) and Lower Midland 2 (mean annual rainfall of 1300-1700 mm) agro-ecological zones had significantly (÷2=14.172; P=0.0002) higher levels of aflatoxin compared to the Homa bay district, that has more of the drier Lower Midland 3 agroecological zone (mean annual rainfall of 900-1500mm). Improved cultivars had significantly (÷2=9.748; P=0.0018) lower levels of aflatoxin compared to local cultivars. Over 60 per cent of all samples had A. flavus S-strain, A. flavus L-strain and A. niger. A. flavus S-strain was positively correlated with aflatoxin levels. As expected, grading of peanuts post-harvest significantly reduced the incidence of A. flavus S- and L-strains, while peanuts collected from farmers who belonged to producer marketing groups had a significantly lower incidence of A. flavus S- and L-strains, A. niger and Rhizopus spp. The incidence of A. flavus L-strain, A. niger and Rhizopus spp. was significantly higher in local landraces compared to the improved cultivars. Over 60 per cent of isolates produced Aflatoxin B1. Intermediate processes such as sorting and dehusking led to a significant decline in levels of aflatoxin. Soaking peanuts in water, magadi, NaOCl and ammonium persulphate significantly reduced aflatoxin levels by 27.7, 18.4, 18.3 and 1.6 per cent respectively; while boiling the peanuts in magadi, local ash, baking powder and water reduced aflatoxin levels by 43.8, 41.8, 28.9 and 11.7 per cent respectively. Using magadi during boiling increased the acceptability of the boiled peanuts while reducing the aflatoxin levels. The impact of aflatoxin levels in peanuts studied in this research is within safe limits except a few samples, and therefore aflatoxin contamination of peanuts at household level is not a serious threat. Contamination by aflatoxin and post-harvest fungi can be reduced by focusing on improved control strategies for wetter and more humid zones such as planting improved peanut cultivars and controlling pre-harvest pest damage. Conventional household peanut preparation techniques should be explored as possible aflatoxin management strategies in Kenya. The aflatoxin binding properties of locally available salts such as magadi and locally prepared ash should be further investigated. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.

Page generated in 0.0678 seconds