Spelling suggestions: "subject:"potassium niobate"" "subject:"potassium biobate""
1 |
Multiple Charge Carrier Species and Their Effects in Photorefractive Two-Beam Coupling in Potassium NiobateAmonson, Michael D. January 2017 (has links)
No description available.
|
2 |
Síntese e caracterização de KNbO3 aplicado na fotodegradação remazol amarelo ouro em solução fotodegradação de remazol amarelo ouro em solução aquosa aquosa / Ynthesis and characterization of KNbO3 applied to the photodegradation of remazol yellow goldSilva, Arnayra Sonayra de Brito 27 February 2014 (has links)
Made available in DSpace on 2015-05-14T13:21:35Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 2485638 bytes, checksum: 60d79f7bd25e1ad9c1ac5a5e78d9dc30 (MD5)
Previous issue date: 2014-02-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The potassium niobate, KNbO3, of orthorhombic perovskite presenting ferroelectric, optical property, in addition to their use in heterogeneous photocatalysis. This work consists of two stages - the synthesis of potassium niobate and its evaluation in the photodegradation of the dye Remazol Yellow Gold (RNL). The synthesis of KNbO3 was performed by polymeric precursors and catalysts were characterized by X- ray diffraction ( XRD ), infrared spectroscopy (IR) spectroscopy, ultraviolet visible (UV-Vis) region and area analysis surface . XRD results showed that the perovskite had a far-reaching organization, and there was a decrease in the secondary phase (K4Nb6O17). IR spectra confirmed these data by presenting a reduction of the bands related to vibrations with short double bond character of the Nb = O. The surface area values were lower with increasing temperature. The photocatalyst was applied to the dye Remazol yellow discoloration of gold (RNL) and the parameters used were: radiation time (2 and 4 h), the amount of catalyst (5 or 20 mg) and the change in pH (3 and 6). It was observed that a higher radiation time, a smaller quantity of catalyst and lower pH favoring a better photocatalytic efficiency, obtaining a result of discoloration of 55 %. A comparative study was done with a temperature of 700 º C, as the best result obtained in the previous tests, and observed a photocatalytic efficiency of 67% discoloration. / O niobato de potássio, KNbO3, é uma perovskita ortorrômbica que apresenta propriedade ferroelétrica, óptica, além da sua utilização em fotocatálise heterogênea. O presente trabalho consiste em duas etapas a síntese de niobato de potássio e a sua avaliação na fotodegradação do corante Amarelo Remazol Ouro (RNL). A síntese do KNbO3 foi realizada pelo método dos precursores poliméricos e os catalisadores foram caracterizados por difratometria de raios-X (DRX), espectroscopia na região do infravermelho (IV), espectroscopia na região do ultravioleta visível (UV-Vis) e análise de área superficial. Os resultados de DRX mostraram que as perovskitas apresentaram uma organização a longo alcance, e houve uma diminuição da fase secundária (K4Nb6O17). Os espectros de IV confirmaram esses dados ao apresentarem uma redução das bandas referentes às vibrações curtas com caráter de dupla ligação do Nb=O. Os valores de área superficial foram menores com o aumento da temperatura. O fotocatalisador foi aplicado na descoloração do corante remazol amarelo ouro (RNL) e os parâmetros utilizados foram: o tempo de radiação (2 e 4 h), a quantidade de catalisador (5 ou 20 mg) e a variação do pH (3 e 6). Observou que um maior tempo de radiação, uma quantidade menor de catalisador e menor pH favoreceram uma melhor eficiência fotocatalítica, obtendo um resultado de 55% de descoloração. Um estudo comparativo foi feito com a temperatura de 700 ºC, como o melhor resultado obtido nos testes anteriores, e observou uma eficiência fotocatalítica de 67 % de descoloração.
|
3 |
Reliability Assessment and Defect Characterization of Piezoelectric Thin FilmsHo, Kuan-Ting 19 October 2024 (has links)
The ensuring of reliability of piezoelectric thin films is crucial for a successful piezoelectric micro-electromechanical system (piezoMEMS) application. One of the most important limiting factors for reliability is resistance degradation, where the leakage current increases over time under electrical load. The understanding of resistance degradation in piezoelectric thin films requires knowledge about point defects inside the materials. In this dissertation, the resistance degradation mechanism in sputtered lead zirconate titanate (PZT) and lead-free alternative sodium potassium niobate (KNN) thin films is studied in both voltage polarities, and its relation to point defects is established. The conduction mechanism of both PZT and KNN thin films is found to be Schottky-limited. Furthermore, the resistance degradation is due to the reduction in Schottky barrier height, which results from the interfacial accumulation of additional charged defects. In order to study those defects, we use thermally stimulated depolarization current (TSDC) measurements and charge-based deep level transient spectroscopy (Q-DLTS) to characterize the defects in both PZT and KNN thin films. In PZT thin films, the resistance degradation take place in different waves of increasing leakage current. Both oxygen vacancies and lead vacancies contribute to the different waves of resistance degradation in both voltage polarities. A physical degradation model was developed based on hopping migration of oxygen vacancies at constant speed and exponent accumulation of lead vacancy trapping, where the natural logarithm of leakage current is proportional to the accumulated defect concentration to the power of 0.25. By using the oxygen vacancy concentration measured by TSDC and lead vacancy concentrations measured by Q-DLTS, the model successfully explained the resistance degradation behaviors of PZT films varying due to deposition non-uniformity and due to different process parameters. The accumulation of oxygen vacancies at cathode is supported by X-ray photoelectron spectroscopy (XPS), and the resistance degradation can be restored by proper heat and electrical treatment as predicted by the defect characterization results. In KNN thin films, oxygen vacancies contribute to the resistance degradation when a negative voltage is applied at the top electrode, whereas sodium and potassium vacancies contribute to the resistance degradation when a positive voltage is applied at the top electrode. The model developed for PZT can be applied also to KNN, where the model successfully explained the resistance degradation behaviors of KNN films varying due to the deposition non-uniformity by using the defect concentration measured by TSDC. The accumulation of oxygen vacancies at cathode and sodium plus potassium vacancies at anode are supported by transmission electron microscopy energy dispersive X-ray spectroscopy (TEM-EDX), and the resistance degradation can be restored also by proper heat and electrical treatment as predicted by the defect characterization results. This dissertation revealed the similarity of the resistance degradation between sputtered PZT and KNN thin films. The degradation is controlled by the crystallography point defects created during deposition process inside the material, indicating the significance of process control on material reliability. This dissertation also demonstrates the applicability of TSDC and Q-DLTS as alternative methods to assess the quality of the piezoelectric thin films. Both measurement techniques provide additional information regarding specific defects when comparing with conventional highly accelerated lifetime test (HALT) or other relevant tests. / Die Sicherstellung der Zuverlässigkeit piezoelektrischer Dünnschichten ist entscheidend für eine erfolgreiche Anwendung in piezoelektrischen mikro-elektromechanischen Systemen (piezoMEMS). Einer der wichtigsten limitierenden Faktoren für die Zuverlässigkeit ist die Widerstandsdegradation, bei der der Leckstrom mit der Zeit unter elektrischer Last zunimmt. Das Verständnis der Widerstandsdegradation in piezoelektrischen Dünnschichten erfordert laut Literatur Kenntnisse über Punkt-Defekte innerhalb der Materialien. In dieser Dissertation wird der Mechanismus der Widerstandsdegradation in gesputterten Blei-Zirkonat-Titanat (PZT) Dünnschichten und dessen bleifreier alternative Kalium-Natrium-Niobat (KNN) in beiden Spannungspolaritäten untersucht und deren Zusammenhang mit Punkt-Defekte hergestellt. Der Leitungsmechanismus von PZT- und KNN-Dünnschichten ist Schottky-begrenzt. Außerdem ist die Widerstandsdegradation auf die Reduzierung der Schottky-Barrierhöhe zurückzuführen, die von der Akkumulation zusätzlicher aufgeladener -Defekte an der Grenzfläche stammt. Um diese -Defekte zu untersuchen, verwenden wir thermisch stimulierte Depolarisationsstrommessungen (Thermally stimulated depolarization current, TSDC) und ladungsbasierte Deep-Level-Transientenspektroskopie (Charge-based deep level transient spectroscopy, Q-DLTS), um die Defekte sowohl in PZT- als auch in KNN-Dünnschichten zu charakterisieren.Die Wiederstandsdegradation in PZT-Dünnschichten findet in unterschiedlichen Wellen des erhöhenden Leckstroms statt. Sowohl Sauerstofffehlstellen als auch Bleifehlstellen tragen zu den unterschiedlichen Wellen der Widerstandsdegradation in beiden Spannungspolaritäten bei. Ein physikalisches Degradationsmodell wurde entwickelt, basierend auf der Hopping-Migration von Sauerstofffehlstellen bei konstanter Geschwindigkeit und exponentieller Akkumulation von Ladungseinfang durch Bleifehlstellen, wobei der natürliche Logarithmus des Leckstroms proportional zur akkumulierten Defektkonzentration hoch 0,25 ist. Durch die Verwendung der Sauerstofffehlstellen- und Bleifehlstellenkonzentrationen konnte das Modell das Widerstandsdegradationsverhalten von PZT-Dünnschichten erklären, das wegen der Ungleichmäßigkeit der Deposition und wegen der verschiedenen Prozessparameters variiert. Die Sauerstofffehlstellenkonzentration wird durch TSDC gemessen und die Bleifehlstellenkonzentrationen wird durch Q-DLTS gemessen. Die Akkumulation von Sauerstofffehlstellen an der Kathode wird durch die Röntgen-Photoelektronenspektroskopie (X-ray photoelectron spectroscopy, XPS) unterstützt und die Widerstandsdegradation kann durch eine ordnungsgemäße Wärme- und elektrische Behandlung wiederhergestellt werden, wie durch die Ergebnisse von Defektecharakterisierung vorhergesagt wurde. Bei KNN-Dünnschichten tragen Sauerstofffehlstellen zu der Widerstandsdegradation bei, wenn eine negative Spannung an der oberen Elektrode anliegt, und Natrium- und Kaliumfehlstellen tragen zu der Widerstandsdegradation bei, wenn eine positive Spannung an der oberen Elektrode anliegt. Das für PZT entwickelte Modell kann auch auf KNN angewendet werden. Das Modell erklärt erfolgreich das Widerstandsdegradationverhalten von KNN-Dünnschichten, das durch die Ungleichmäßigkeit der Deposition variiert werden, was mithilfe der mit TSDC gemessenen Defektkonzentrationen erklärt werden kann. Die Akkumulation von Sauerstofffehlstellen an Kathode und Natrium- und Kaliumfehlstellen an der Anode wird durch die transmissionselektronenmikroskopische energiedispersive Röntgenspektroskopie (transmission electron microscopy energy dispersive X-ray spectroscopy, TEM-EDX) unterstützt, und die Widerstandsdegradation kann auch durch eine ordnungsgemäße Wärme- und elektrische Behandlung wiederhergestellt werden, wie durch die Ergebnisse von Defektecharakterisierung vorhergesagt wurde. Diese Dissertation zeigt die Ähnlichkeit der Widerstandsdegradation zwischen gesputterten PZT- und KNN-Dünnschichten. Die Degradation wird durch die kristallographischen Punkt-Defekte gesteuert, die während des Abscheidungsprozesses im Material entstehen. Das weist auf die Bedeutung der Prozesskontrolle für die Zuverlässigkeit des Materials hin. Diese Dissertation zeigt auch die Anwendbarkeit von TSDC und Q-DLTS als alternative Methoden zur Beurteilung der Qualität der piezoelektrischen Dünnschichten. Beide Messtechniken liefern zusätzliche Informationen zu spezifischen Defekte im Vergleich zu traditionellen HALT-Prüfungen (highly accelerated lifetime test).
|
Page generated in 0.0531 seconds