• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 8
  • 1
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 10
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular characterisation of the small and large subunits of ADP-glucose pyrophosphorylase genes in Solanum tuberosum L

Chauhan, Geeta January 1992 (has links)
No description available.
2

The evaluation and comparison of various tablet disintegrants / Milandi Pretorius

Pretorius, Milandi January 2008 (has links)
Thesis (M.Sc (Pharmaceutics))--North-West University, Potchefstroom Campus, 2009.
3

The evaluation and comparison of various tablet disintegrants / Milandi Pretorius

Pretorius, Milandi January 2008 (has links)
Thesis (M.Sc (Pharmaceutics))--North-West University, Potchefstroom Campus, 2009.
4

The evaluation and comparison of various tablet disintegrants / Milandi Pretorius

Pretorius, Milandi January 2008 (has links)
Thesis (M.Sc (Pharmaceutics))--North-West University, Potchefstroom Campus, 2009.
5

Production of amylopectin and high-amylose starch in separate potato genotypes /

Hofvander, Per, January 2004 (has links) (PDF)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniversitet, 2004. / Härtill 5 uppsatser.
6

Prospecção, purificação e propriedades funcionais de uma glucoamilase de Aspergillus japonicus: aplicação do extrato enzimático em reciclagem de papel / Prospecção, purificação e propriedades funcionais de uma glucoamilase de Aspergillus japonicus: aplicação do extrato enzimático em reciclagem de papel

Pasin, Thiago Machado 07 July 2015 (has links)
O gênero Aspergillus tem se destacado na produção de enzimas de aplicação industrial, destacando-se dentre estas, as amilases, capazes de hidrolisar as ligações -glicosídicas do amido. As amilases são usadas nos processos industriais para a produção de etanol, glicose e xarope de frutose, além da indústria têxtil, de papéis e detergentes. Neste contexto, este trabalho visou a prospecção de fungos filamentosos para a produção de amilase e a padronização das condições de cultura do Aspergillus japonicus. A otimização das condições de reação da amilase produzida pelo fungo, a purificação, caracterização e teste de diferentes concentrações de íons na atividade enzima pura, a determinação do conteúdo de carboidratos, das constantes cinéticas e análise dos aminoácidos que compõem a glucoamilase purificada e a aplicação da amilase bruta produzida pelo fungo A. japonicus no processo de branqueamento do papel reciclado. Os resultados do screening de fungos filamentosos bons produtores de enzimas amilolíticas evidenciaram dois fungos com alta produção de amilase, os quais foram identificados como Aspergillus parasiticus e Aspergillus japonicus. Os estudos prosseguiram com o A. japonicus como fungo selecionado. Este fungo mostrou melhor produção enzimática no meio de cultura KHANNA e máxima produção amilolítica após 4 dias de crescimento em condições estáticas obtendo uma atividade de 44.65 (± 0.49) U/mL. O pH ideal do meio de cultivo foi de 5,5 e a temperatura ótima de 25°C. As melhores fontes de carbono para a produção enzimática foram o amido de batata e a maltose, respectivamente, e o melhor resíduo de alimento foi a casca e bagaço de laranja. Após a caracterização das condições de cultivo do fungo, vieram as caracterizações dos parâmetros físico-químicos da amilase. A temperatura e pH ótimo de ensaio enzimático foram padronizados sendo, respectivamente, 50C e 5,5. A amilase manteve a sua atividade em torno de 90% de 30º a 50ºC após uma hora de incubação, aproximadamente 95% de sua atividade nos pH de 4,0 a 6,0 e 50% nos pH de 6,5 à 9,0 após uma hora de incubação. Os produtos da hidrólise da amilase mostraram a formação apenas de glicose, na cromatografia de placa delgada de silica, podendo-se supor que esta enzima trata-se de uma glucoamilase, o que foi comprovado por experimentos subsequentes. A enzima bruta foi submetida a eluição em DEAE-cellulose e uma glucoamilase com massa molecular de 72 kDa foi purificada conforme determinado por SDS-PAGE. A temperatura ótima desta glucoamilase purificada foi de 65°C e o pH foi de 5.0. A enzima também demonstrou alta estabilidade a diferentes temperaturas e pH, assim como, uma grande quantidade de produtos gerados quando usada a amilopectina como substrato de reação. A glucoamilase mostrou uma alta ativação na presença de 10 mM de MnCl2, KCl, Pb(C2H3O2)2.3H2O, and 2-mercaptoetanol e um valor de Km de 0,59 mg/mL, Vmáx de 308,01 U/mg e Kcat de 369,58 (s-1). A quantidade de carboidratos que compõem a estrutura da enzima bruta e purificada foram quantificados sendo de 15% e 5,5%, respectivamente. A enzima pura teve seus aminoácidos identificados por análise comparativa com outros gêneros e espécies de fungos produtores de glucoamilase, a enzima também apresentou identidade com o domínio de ligação ao amido existente no fungo Neosartorya fischeri NRRL 181. Quando a glucoamilase bruta foi aplicada no processo de biobranqueamento do papel reciclado impresso por tinta ao jato, a enzima apresentou uma média de 23,34% de aumento da alvura relativa quando comparada ao controle, já na polpa de papel de revista a enzima levou a uma média de 23,89% de aumento na alvura relativa. Os resultados apresentados abrem a possibilidade da utilização destas enzimas no biobranqueamento de polpa de celulose, para a produção e reciclagem de papel pelas indústrias. / The genus Aspergillus has been highlighted in the production of enzymes for industrial application, standing out among these, amylases, capable of hydrolyzing the ?-glycosidic linkages of starch. Amylases are used in industrial processes for the production of ethanol, glucose and fructose syrup, in addition to textiles, detergents and paper. In this context, this work aimed the prospecting of filamentous fungi to produce amylase and the standardization of Aspergillus japonicus culture conditions. The optimization of reaction conditions for amylase produced by the fungus, purification, characterization and testing different concentrations of ions in pure enzyme activity, determining the carbohydrate content, the kinetic constants, analysis of the amino acids that comprise the purified glucoamylase and the application of crude amylase in the bleaching process of the recycled paper. The results of the screening of filamentous fungi that produced good levels of amylolytic enzymes showed two fungi with high production of amylase, which were identified as Aspergillus parasiticus and Aspergillus japonicus. The studies continued with A. japonicus as selected fungus. This strain showed the best enzyme production in the culture medium Khanna and maximum amilolytic production after 4 days of growth under static conditions obtaining an activity of 44.65 (± 0:49) U/ml. The optimum pH of the medium was 5.5 and the optimum temperature of 25°C. The best carbon sources for the enzyme production were potato starch and maltose, respectively, and the best food residue was orange peel and bagasse. After the characterization of fungal culture conditions, came the characterization of physical and chemical parameters of amylase. The temperature and optimum pH of enzyme assay were standardized being, respectively, 5.5 and 50°C. Amylase retained its activity around 90% at 30 to 50°C after one hour of incubation, approximately 95% of its activity in the pH range of 4.0 to 6.0 and 50% in pH range of 6.5 to 9.0 after an hour of incubation. Amylase hydrolysis products showed only the formation of glucose, in thin layer chromatography on silica, and it can be assumed that it is a glucoamylase, which was confirmed by subsequent experiments. The crude enzyme was subjected to elution through DEAE-cellulose and a glucoamylase showing a molecular weight of 72 kDa as determined by SDS-PAGE was purified. The optimum temperature of this purified glucoamylase was 65°C and the pH was 5.0. The enzyme also showed high stability at different temperatures and pH, as well as a large amount of products generated when used as a reaction substrate the amylopectin. Glucoamylase showed a high activation in the presence of 10 mM de MnCl2, KCl, Pb(C2H3O2)2.3H2O, and 2-mercaptoethanol and a Km value of 0.59 mg/mL, Vmax of 308.01 U/mg and Kcat of 369.58 (s-1). The amount of carbohydrates that compose the structure of crude and purified enzyme were measured at 15% and 5.5%, respectively. The pure enzyme had its amino acids identified by comparison with other genera and species of fungi producers of glucoamylase, the enzyme also showed identity with the existing starch binding domain in Neosartorya fischeri NRRL 181 fungus. When the crude glucoamylase was applied in biobleaching process of the recycled paper printed by the ink jet, the enzyme showed an average of 23.34% increase in relative brightness as compared to control, in the journal paper pulp has led to the enzyme an average of 23.89% increase in the relative brightness. The results presented here open the possibility of using these enzymes in pulp biobleaching pulp for the production and recycling of paper by industry.
7

Physiological and biochemical factors responsible for boar taint /

Chen, Gang, January 2007 (has links) (PDF)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniv., 2007. / Härtill 5 uppsatser.
8

Prospecção, purificação e propriedades funcionais de uma glucoamilase de Aspergillus japonicus: aplicação do extrato enzimático em reciclagem de papel / Prospecção, purificação e propriedades funcionais de uma glucoamilase de Aspergillus japonicus: aplicação do extrato enzimático em reciclagem de papel

Thiago Machado Pasin 07 July 2015 (has links)
O gênero Aspergillus tem se destacado na produção de enzimas de aplicação industrial, destacando-se dentre estas, as amilases, capazes de hidrolisar as ligações -glicosídicas do amido. As amilases são usadas nos processos industriais para a produção de etanol, glicose e xarope de frutose, além da indústria têxtil, de papéis e detergentes. Neste contexto, este trabalho visou a prospecção de fungos filamentosos para a produção de amilase e a padronização das condições de cultura do Aspergillus japonicus. A otimização das condições de reação da amilase produzida pelo fungo, a purificação, caracterização e teste de diferentes concentrações de íons na atividade enzima pura, a determinação do conteúdo de carboidratos, das constantes cinéticas e análise dos aminoácidos que compõem a glucoamilase purificada e a aplicação da amilase bruta produzida pelo fungo A. japonicus no processo de branqueamento do papel reciclado. Os resultados do screening de fungos filamentosos bons produtores de enzimas amilolíticas evidenciaram dois fungos com alta produção de amilase, os quais foram identificados como Aspergillus parasiticus e Aspergillus japonicus. Os estudos prosseguiram com o A. japonicus como fungo selecionado. Este fungo mostrou melhor produção enzimática no meio de cultura KHANNA e máxima produção amilolítica após 4 dias de crescimento em condições estáticas obtendo uma atividade de 44.65 (± 0.49) U/mL. O pH ideal do meio de cultivo foi de 5,5 e a temperatura ótima de 25°C. As melhores fontes de carbono para a produção enzimática foram o amido de batata e a maltose, respectivamente, e o melhor resíduo de alimento foi a casca e bagaço de laranja. Após a caracterização das condições de cultivo do fungo, vieram as caracterizações dos parâmetros físico-químicos da amilase. A temperatura e pH ótimo de ensaio enzimático foram padronizados sendo, respectivamente, 50C e 5,5. A amilase manteve a sua atividade em torno de 90% de 30º a 50ºC após uma hora de incubação, aproximadamente 95% de sua atividade nos pH de 4,0 a 6,0 e 50% nos pH de 6,5 à 9,0 após uma hora de incubação. Os produtos da hidrólise da amilase mostraram a formação apenas de glicose, na cromatografia de placa delgada de silica, podendo-se supor que esta enzima trata-se de uma glucoamilase, o que foi comprovado por experimentos subsequentes. A enzima bruta foi submetida a eluição em DEAE-cellulose e uma glucoamilase com massa molecular de 72 kDa foi purificada conforme determinado por SDS-PAGE. A temperatura ótima desta glucoamilase purificada foi de 65°C e o pH foi de 5.0. A enzima também demonstrou alta estabilidade a diferentes temperaturas e pH, assim como, uma grande quantidade de produtos gerados quando usada a amilopectina como substrato de reação. A glucoamilase mostrou uma alta ativação na presença de 10 mM de MnCl2, KCl, Pb(C2H3O2)2.3H2O, and 2-mercaptoetanol e um valor de Km de 0,59 mg/mL, Vmáx de 308,01 U/mg e Kcat de 369,58 (s-1). A quantidade de carboidratos que compõem a estrutura da enzima bruta e purificada foram quantificados sendo de 15% e 5,5%, respectivamente. A enzima pura teve seus aminoácidos identificados por análise comparativa com outros gêneros e espécies de fungos produtores de glucoamilase, a enzima também apresentou identidade com o domínio de ligação ao amido existente no fungo Neosartorya fischeri NRRL 181. Quando a glucoamilase bruta foi aplicada no processo de biobranqueamento do papel reciclado impresso por tinta ao jato, a enzima apresentou uma média de 23,34% de aumento da alvura relativa quando comparada ao controle, já na polpa de papel de revista a enzima levou a uma média de 23,89% de aumento na alvura relativa. Os resultados apresentados abrem a possibilidade da utilização destas enzimas no biobranqueamento de polpa de celulose, para a produção e reciclagem de papel pelas indústrias. / The genus Aspergillus has been highlighted in the production of enzymes for industrial application, standing out among these, amylases, capable of hydrolyzing the ?-glycosidic linkages of starch. Amylases are used in industrial processes for the production of ethanol, glucose and fructose syrup, in addition to textiles, detergents and paper. In this context, this work aimed the prospecting of filamentous fungi to produce amylase and the standardization of Aspergillus japonicus culture conditions. The optimization of reaction conditions for amylase produced by the fungus, purification, characterization and testing different concentrations of ions in pure enzyme activity, determining the carbohydrate content, the kinetic constants, analysis of the amino acids that comprise the purified glucoamylase and the application of crude amylase in the bleaching process of the recycled paper. The results of the screening of filamentous fungi that produced good levels of amylolytic enzymes showed two fungi with high production of amylase, which were identified as Aspergillus parasiticus and Aspergillus japonicus. The studies continued with A. japonicus as selected fungus. This strain showed the best enzyme production in the culture medium Khanna and maximum amilolytic production after 4 days of growth under static conditions obtaining an activity of 44.65 (± 0:49) U/ml. The optimum pH of the medium was 5.5 and the optimum temperature of 25°C. The best carbon sources for the enzyme production were potato starch and maltose, respectively, and the best food residue was orange peel and bagasse. After the characterization of fungal culture conditions, came the characterization of physical and chemical parameters of amylase. The temperature and optimum pH of enzyme assay were standardized being, respectively, 5.5 and 50°C. Amylase retained its activity around 90% at 30 to 50°C after one hour of incubation, approximately 95% of its activity in the pH range of 4.0 to 6.0 and 50% in pH range of 6.5 to 9.0 after an hour of incubation. Amylase hydrolysis products showed only the formation of glucose, in thin layer chromatography on silica, and it can be assumed that it is a glucoamylase, which was confirmed by subsequent experiments. The crude enzyme was subjected to elution through DEAE-cellulose and a glucoamylase showing a molecular weight of 72 kDa as determined by SDS-PAGE was purified. The optimum temperature of this purified glucoamylase was 65°C and the pH was 5.0. The enzyme also showed high stability at different temperatures and pH, as well as a large amount of products generated when used as a reaction substrate the amylopectin. Glucoamylase showed a high activation in the presence of 10 mM de MnCl2, KCl, Pb(C2H3O2)2.3H2O, and 2-mercaptoethanol and a Km value of 0.59 mg/mL, Vmax of 308.01 U/mg and Kcat of 369.58 (s-1). The amount of carbohydrates that compose the structure of crude and purified enzyme were measured at 15% and 5.5%, respectively. The pure enzyme had its amino acids identified by comparison with other genera and species of fungi producers of glucoamylase, the enzyme also showed identity with the existing starch binding domain in Neosartorya fischeri NRRL 181 fungus. When the crude glucoamylase was applied in biobleaching process of the recycled paper printed by the ink jet, the enzyme showed an average of 23.34% increase in relative brightness as compared to control, in the journal paper pulp has led to the enzyme an average of 23.89% increase in the relative brightness. The results presented here open the possibility of using these enzymes in pulp biobleaching pulp for the production and recycling of paper by industry.
9

Investigation of potato starch and sonicated return activated sludge as alternative carbon sources for biological nitrogen removal.

Kuncoro, Gideon Bani January 2008 (has links)
High nitrogen discharge from the municipal wastewater is a major concern for the South Australian Government, primarily due to negative impacts on the marine environment. Therefore, under the South Australian Environmental Improvement Program, (SA EIP), all metropolitan wastewater treatment plants have been reconfigured to achieve enhanced nitrogen removal. Secondary treatment (denitrification process) at the metropolitan wastewater treatment plants must be optimised to meet the discharge guideline of 10 mg/L total nitrogen. However, secondary treatment at some plants is carbon limited (low C/N ratio), and external carbon supplementation is required to meet this discharge guideline. Molasses provides the current external carbon source at two plants. It is relatively inexpensive, but other carbon sources, particularly industrial waste streams, may be more attractive, due to the potentially lower material cost, as it is practically free, and environmentally friendly. Potato starch and sonicated return activated sludge (RAS) were considered. In this study, the bioavailability of the soluble carbon in potato starch and ultrasound treated RAS were assessed. The associated objective was to investigate the potential of both carbon sources as an external carbon donor for the denitrification zone of wastewater treatment plants to economically improve biological nitrogen removal. The economic analysis was performed using mainly United States dollars and the fixed capital investments and total capital costs were converted to Australian dollars. This was due to the United States dollars currency quotes obtained for the materials and unit operations required. SCOD from the three sources was quantified and preliminary results were presented. Molasses provided the highest SCOD release of 1.1285 x 10⁶ mg-SCOD/L, sonicated RAS produced 5.6 to 68.4 times the SCOD release of the untreated RAS (35.6 mg-SCOD/L) depending on the ultrasound intensity and treatment time, while the highest soluble carbon release obtained using potato starch was 809 mg-SCOD/L (using 20.9 g/100 mL potato starch concentration). Based on the experimental SCOD results, batch denitrification tests using the proposed carbon sources were carried out. The nitrogen removal efficiency at low dose (12.48 mg-SCOD/L) using molasses, potato starch and sonicated RAS were 77.54%, 57.24%, and 72.76% respectively, whilst at high dose (124.80 mg-SCOD/L) were 94.04%, 66.32%, and 92.10% correspondingly. In similar order of the proposed carbon sources, the nitrate removal rates for the first phase denitrification with low dose were 1.44, 1.16, and 1.18 mg-NO₃ − /h respectively, whilst the nitrate removal rate of the first phase denitrification with high dose improved to 2.01, 1.26, and 1.96 mg-NO₃ −/h correspondingly. From the denitrification test results, molasses proved to be the optimal carbon source in terms of nitrate removal. However sonicated RAS possesses similar denitrification performance and may be a suitable alternative. An economic analysis for sonicated RAS Option 2 confirmed it as the most viable substitute. The time to recover the initial investment (payback period) is approximately 6.5 years and the breakeven point is approximately 8 years. Both denitrification tests and economic analyses demonstrate that sonicated RAS may be a viable and attractive substitute for the molasses. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1337059 / Thesis (M.Eng.Sc.) - University of Adelaide, School of Chemical Engineering, 2008
10

Optimisation and scale-up of a biotechnological process for production of L(+)-Lactic Acid form waste potato starch by Rhizopus arrhizus.

Zhang, Zhanying January 2008 (has links)
L(+)-Lactic acid is a commonly occurring organic acid, which is valuable due to its wide use in food and food-related industries, and its potential for the production of biodegradable and biocompatible polylactate polymers. The aim of this study was to optimize and scale-up a biotechnological process of L(+)-lactic acid production by suspended cells of R. arrhizus DAR 36017 with waste potato starch as the substrate. Commonly used inorganic and organic nitrogen sources, including ammonium sulphate, ammonium nitrate, urea, yeast extract and peptone, were assessed in conjunction with various ratios of carbon to nitrogen (C:N). Fermentation media with a low C:N ratio enhanced the production of lactic acid, biomass and ethanol, while a high C:N ratio led to production of more fumaric acid as a by-product. The use of organic nitrogen sources (yeast extract, peptone and urea) resulted in a significant reduction of lactic acid yields by 15% - 34% with a decrease of C:N from 168 to 28. The use of inorganic nitrogen sources (ammonium nitrate and ammonium sulphate) led to a high lactic acid yield of 84% - 91% at a C:N below 168. Therefore, ammonium nitrate and ammonium sulphate were considered to be better nitrogen sources for lactic acid production. Small pellets are the favoured morphological form for many fermentation processes by filamentous fungi. However, to control filamentous Rhizopus sp in the pellet form in a submerged fermentation system is difficult due to its filamentous characteristics. An acidadapted preculture technique was developed to induce the formation of the pellet form in bioreactors. Using the acid-adapted precultures, the fungal biomass can be controlled in small dispersed pellets as a dominant morphological form. With these small pellets, a lactic acid yield of 86-89%, corresponding to a concentration of 86-89g/L, was obtained in a laboratory scale process using a stirred tank reactor (STR) and a bubble column reactor (BCR). A batch bioprocess for lactic acid production was successfully scaled-up from shake flasks to laboratory scale bioreactors. Results from a simulated scale-up process revealed that the concentration and productivity of lactic acid decreased with the increase of the scale-up steps because of increased pellet size. This suggested that a one-step scale-up process using the acid-adapted preculture may be feasible in an industrial-scale bioreactor system. A comprehensive investigation of the impact of cultivation parameters on the morphology of R. arrhizus and lactic acid production was carried out in the BCR. The results showed that the fungal morphology was significantly influenced by carbon sources, pH, starch concentrations, sparger designs and aeration rates. The favoured morphology for lactic acid production was freely dispersed small pellets, which could be retained as a dominant morphology under operation conditions at pH 5.0 – 6.0, starch concentrations of 60 – 120 g/L and aeration rates of 0.2 – 0.8 vvm, using a sintered stainless steel disc sparger. The optimal cultivation conditions at pH 6.0 and aeration rate of 0.4 vvm resulted in the formation of the freely dispersed small pellets and production of 103.8 g/L lactic acid, with a yield of 87%, from 120 g/L liquefied potato starch in 48 h. This study shows a technically feasible and economically promising process for the production of lactic acid from waste potato starch. The use of waste potato starch instead of pure glucose or starch as substrate can significantly reduce the production cost, making this technology environmentally and economically attractive. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1339122 / Thesis (Ph.D.) -- University of Adelaide, School of Chemical Engineering, 2008

Page generated in 0.0422 seconds