• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Domínios de potências fracionárias de operadores matriciais segundo Lasiecka-Triggiani /

Bongarti, Marcelo Adriano dos Santos. January 2016 (has links)
Orientador: German Jesus Lozada Cruz / Banca: Waldemar Donizete Bastos / Banca: Marcia Cristina Anderson Braz Federson / Resumo: Sejam X um espaço de Banach,\alpha um número complexo tal que Re\alpha > 0 e A um operador linear fechado, não negativo, com domínio e imagem em X. O objetivo deste trabalho é definir o objeto A^\alpha de modo que as propriedades de potência de números complexos sejam preservadas, ou seja, (i) A ^\alpha A^\beta = A^(\alpha+\beta) ; (aditividade) (ii) A^1 = A; (iii) (A^\alpha )^\beta = A (quando o primeiro membro faz sentido). Como aplicação da teoria, caracterizamos o dom ínio da potência fracionária de um operador de nido matricialmente a partir da seguinte Equação Diferencial Parcial abstrata em espaço de Hilbert, prototipo utilizado para modelar sistemas elásticos com forte (ou estrutural) amortecimento: x ' + A^\alpha x' + Ax = 0; 0 < \alpha <= 1; com A sendo um operador positivo e autoadjunto / Abstract: Let X be a Banach space, \alpha a complex number such that Re \alpha > 0 and A a non-negative closed linear operator with domain and range in X. The purpose of this work is to de fine the object A^\alpha in a way that the properties of powers of complex numbers be preserved, i.e, (i) A ^\alpha A^\beta = A^(\alpha+\beta) ; (additivity) (ii) A^1 = A; (iii) (A^\alpha )^\beta = A (when the fi rst member makes sense). As an application of theory, we characterized the domain of fractional power of a matrix-valued operator from the abstract Partial Di erential Equation in Hilbert space, prototype used to model elastic systems with strong/structural damping: x' + A^\alpha x' + Ax = 0; 0<\alpha <= 1; with A being a positive self-adjoint operator / Mestre

Page generated in 0.0645 seconds