• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mécanismes traductionnels impliqués dans la potentialisation à long-terme de la transmission synaptique des cellules pyramidales de l’hippocampe chez le rongeur.

Gobert, Delphine 04 1900 (has links)
La mémoire et l’apprentissage sont des phénomènes complexes dont on ne comprend pas encore bien l’origine au niveau cellulaire et moléculaire. Cependant, il est largement admis que des changements plus simples au niveau synaptique, tels que la potentialisation à long-terme (long-term potentiation ou LTP) pourraient constituer la base cellulaire de la formation des nouveaux souvenirs. Ces mécanismes sont couramment étudiés au niveau de l’hippocampe, une région du lobe temporal reconnue comme étant nécessaire à la formation de la mémoire explicite chez les mammifères. La LTP est classiquement définie comme un renforcement durable de l’efficacité de connexions synaptiques ayant été stimulées de façon répétée et soutenue. De plus, on peut distinguer deux formes de LTP: une LTP précoce, qui repose sur la modification de protéines déjà formées, et une LTP tardive, qui requiert, elle, la synthèse de nouvelles protéines. Cependant, bien que de nombreuses études se soient intéressées au rôle de la traduction pour la maintenance de la LTP, les mécanismes couplant l’activité synaptique à la machinerie de synthèse protéique, de même que l’identité des protéines requises sont encore peu connus. Dans cette optique, cette thèse de doctorat s’est intéressée aux interactions entre l’activité synaptique et la régulation de la traduction. Il est par ailleurs reconnu que la régulation de la traduction des ARNm eukaryotiques se fait principalement au niveau de l’initiation. Nous avons donc étudié la modulation de deux voies majeures pour la régulation de la traduction au cours de la LTP : la voie GCN2/eIF2α et la voie mTOR. Ainsi, nos travaux ont tout d’abord démontré que la régulation de la voie GCN2/eIF2α et de la formation du complexe ternaire sont nécessaires à la maintenance de la plasticité synaptique et de la mémoire à long-terme. En effet, l’activité synaptique régule la phosphorylation de GCN2 et d’eIF2α, ce qui permet de moduler les niveaux du facteur de transcription ATF4. Celui-ci régule à son tour la transcription CREB-dépendante et permet ainsi de contrôler les niveaux d’expression génique et la synthèse de protéines nécessaires pour la stabilisation à long-terme des modifications synaptiques. De plus, la régulation de la voie mTOR et de la traduction spécifique des ARNm 5’TOP semble également jouer un rôle important pour la plasticité synaptique à long-terme. La modulation de cette cascade par l’activité synaptique augmente en effet spécifiquement la capacité de traduction des synapses activées, ce qui leur permet de traduire et d’incorporer les protéines nécessaires au renforcement durable des synapses. De telles recherches permettront sans doute de mieux comprendre la régulation des mécanismes traductionnels par l’activité synaptique, ainsi que leur importance pour la maintenance de la potentialisation à long-terme et de la mémoire à long-terme. / Learning and memory are complex processes that are not yet fully understood at the cellular and molecular levels. It is however widely accepted that persistent modifications of synaptic connections, like long-term potentiation (LTP), could be responsible for the encoding of new memories. These changes are frequently studied in the hippocampus, a temporal lobe structure that as been shown to be necessary for explicit memory in mammals. Long-term potentiation is classically defined as a persistent and stable modification of synaptic connections that have been repeatedly stimulated. Moreover, there are two different phases of LTP: an early-LTP, that only requires the modification of pre-existing proteins, and a late-LTP, that requires the synthesis of new proteins. Numerous studies have evaluated the role of new protein synthesis for the persistence of LTP, however, the mechanisms coupling synaptic activity and the translational machinery, as well as the identity of the necessary proteins are not yet fully understood. From this perspective, this Ph.D. thesis has evaluated the interactions between synaptic activity and the regulation of translation. As it is widely accepted that the regulation of translation is primarily at the initiation level, we therefore investigated the modulation of two major pathways for the regulation of translation during LTP: the GCN2/eIF2α pathway and the mTOR pathway. First, our studies have shown that the regulation of the GCN2/eIF2α pathway and of the ternary complex formation are necessary for the long-term maintenance of synaptic plasticity and memory. Indeed, synaptic activity regulates GCN2 and eIF2α phosphorylation, which modulates the transcription factor ATF4 levels. ATF4 in turn regulates CREB-dependent transcription, and therefore controls the levels of genetic expression and the synthesis of new proteins necessary for the long-term stabilization of synaptic modifications. Moreover, the regulation of the mTOR pathway and of the specific translation of 5’TOP mRNAs likely also play an important role for long-term synaptic plasticity. Modulation of this cascade by synaptic activity specifically increases the translational capacity of activated synapses, allowing them to translate and incorporate the necessary proteins for the lasting reinforcement of synapses. These studies will undoubtedly help to understand the regulation of translational mechanisms by synaptic activity and their significance for the maintenance of long-term potentiation and long-term memory.
2

Mécanismes traductionnels impliqués dans la potentialisation à long-terme de la transmission synaptique des cellules pyramidales de l’hippocampe chez le rongeur

Gobert, Delphine 04 1900 (has links)
No description available.
3

The Bed Nucleus of the Stria Terminalis between Stress and Reward / Le Noyau du Lit de la Strie Terminale : entre Stress et Récompense

Glangetas, Christelle 18 December 2014 (has links)
L’objectif principal de mon projet de thèse a été d’identifier les mécanismes neuronaux adaptatifs se mettant en place au niveau des circuits de la récompense et des circuits activés en réponse à un stress aigu. Plus spécifiquement, nous avons étudié le rôle du noyau du lit de la strie terminale (BNST) au sein de ces deux circuits. Mon hypothèse est que le BNST appartient à un circuit de structures interconnectées dans lequel il intègre des informations contextuelles (hippocampe ventral) et des informations émotionnelles (cortex préfrontal médian) afin, d’une part, de réguler les niveaux d’anxiété innés ainsi que les réponses induites par les centres du stress suite à un épisode de stress aigu mais également, d’adapter l’activité des neurones dopaminergiques de l’aire tegmentale ventrale (VTA) en vue de motiver ou d’empêcher la reproduction d’un comportement associé à un stimulus récompensant ou aversif. Afin de tester cette hypothèse, nous avons mis en place et développé différents projets de recherche combinant des approches d’électrophysiologie in vivo, anatomiques et comportementales. Dans un premier temps, nous nous sommes intéressés au BNST en tant que structure clef participant à la régulation des centres de stress. Grâce à l’utilisation d’approches d’électrophysiologie in vivo chez la souris anesthésiée, nous avons montré qu’après l’exposition à un stress aigu, les neurones du BNST adaptent leur réponse suite à la stimulation du cortex préfrontal médian et passent d’une dépression à long terme (LTD) en situation contrôle à une potentialisation à long terme (LTP) après un stress aigu. Nous avons disséqué une partie des mécanismes permettant l’élaboration de ces plasticités grâce à l’utilisation de souris génétiquement modifiés pour le récepteur aux endocannabinoïdes de type 1 (CB1-R). Ainsi, nous avons trouvé que la LTD et la LTP mis en place dans le BNST sont médiées par le système endocannabinoïde via les récepteurs CB1. Ensuite, nous avons étudié le rôle du ventral subiculum (vSUB) dans la régulation des neurones du BNST ainsi que l’impact de l’activation de cette voie vSUB-BNST sur l’autre voie glutamatergique ILCx-BNST. Tout d’abord, nous avons montré par des approches électrophysiologiques et anatomiques, qu’un même neurone du BNST est capable d’intégrer des informations provenant à la fois du ventral subiculum et du cortex infralimbic (ILCx). Nous avons induit in vivo une LTP NMDA dépendante dans la voie vSUB-BNST suite à un protocole de stimulation haute fréquence dans le vSUB alors qu’en parallèle ce même protocole induit une LTD sur ces mêmes neurones dans la voie ILCx–BNST. Deplus, nous avons noté que ces adaptations plastiques se mettant en place dans le BNST suiteà une simple stimulation haute fréquence dans le vSUB permettent à long terme de diminuerles niveaux d’anxiété innés chez le rat. Enfin, nous avons mis en évidence que le BNST est un relai excitateur entre le vSUBet la VTA. Nous avons montré qu’une stimulation à haute fréquence dans le vSUBpotentialise in vivo l’activité des neurones dopaminergiques (DA) de la VTA. Or le vSUBne projette pas de manière directe sur les neurones DA de la VTA. Nous avons observé quece protocole de stimulation haute fréquence dans le vSUB induit dans un premier temps uneLTP NMDA dépendante dans les neurones du BNST projetant à la VTA qui est nécessairepour observer cette potentialisation des neurones DA. En dernier lieu, nous avons montréque cette potentialisation des neurones DA de la VTA augmente la réponse locomotrice à unchallenge avec de la cocaine.Ainsi, l’ensemble de ces projets nous ont permis de confirmer et de préciser lafonction majeure du BNST dans la régulation du stress et de l’anxiété ainsi que dans lecircuit de la motivation. / The main goal of my PhD was to identify the adaptive neuronal mechanismsdeveloping in the reward circuit and in the circuit implicated in the regulation of stressresponses. More specifically, we have studied the function of the bed nucleus of the striaterminalis (BNST) in both circuits.My hypothesis was that, the BNST belongs to interconnected circuits in whichintegrates contextual (from ventral hippocampus) and emotional informations (from medialprefrontal cortex). Thus, the BNST diffuses these informations in order to regulate the basalinnate level of anxiety and stress centers responses induced after acute stress exposure, butalso to adapt the activity of dopaminergic neurons of the ventral tegmental area (VTA) thatcan promote or prevent a behavioral task associated with a rewarding or aversive stimulus.To test this hypothesis, we decided to develop several research projects usingelectrophysiological, anatomical and behavioral approaches.Firstly, we focused our interest on the stress circuit in which the BNST is a keystructure which participates in regulating the responses of stress centers after acute stressexposure. By using in vivo electrophysiology approach in anesthetized mice, we haveshown that after acute restraint stress, BNST neurons adapt their plastic responses inducedby the tetanic stimulation of the medial prefrontal cortex: switch from long term depression(LTD) under control condition to long term potentiation (LTP) after acute stress condition.Furthermore, we demonstrated that both LTD and LTP are endocannabinoid dependent byusing genetic modified mice for the type 1 endocannabinoid receptors and localpharmacological approach in the BNST.In a second step, we studied the function of the ventral subiculum (vSUB) in theregulation of BNST neurons and the impact of the vSUB-BNST pathway activation on theother glutamatergic ILCx-BNST pathway. In a first set of experiments, we showed that asame single BNST neuron could integrate informations from both vSUB and the infralimbiccortex. By using high frequency stimulation (HFS) protocols, we induced in vivo NMDAdependentLTP in the vSUB-BNST pathway whereas the same protocol led to LTD in thesame BNST neurons in the ILCx-BNST pathway. Moreover, we noted single application ofHFS protocol in the vSUB induced a long term decrease of the basal innate level of anxietyin rats.Lastly, we presented the BNST as a key excitatory relay between the vSUB and theVTA. Here, we have shown that in vivo HFS protocols in the vSUB potentiate the activity ofdopaminergic (DA) neurons of the VTA. However, the vSUB does not directly project to theVTA. We observed that a HFS protocol in the vSUB first induce NMDA-dependent LTP inBNST neurons that project to the VTA, which is necessary to promote the potentiation of7VTA DA neurons. In the last step, we demonstrated in vivo that the potentiation of VTA DAneurons increases the locomotor response to cocaine challenge.All together, these projects allow us to confirm and detail the major function of theBNST in the regulation of stress and anxiety and also in the motivational circuit.

Page generated in 0.1608 seconds