• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • 4
  • 1
  • 1
  • Tagged with
  • 21
  • 9
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

L’Intégrase du VIH-1 : phosphorylation et caractérisation de partenaires cellulaires / HIV-1 Integrase : phosphorylation and cellular partners

Cosnefroy, Ophélie 12 December 2011 (has links)
L’intégrase (IN) du VIH-1 est une enzyme clé du cycle viral du VIH-1 puisque celle-ci catalyse l’insertion stable du génome viral dans celui de la cellule infectée. D’autre part, l’IN participe également à de nombreuses étapes du cycle viral (transcription inverse, import du complexe de préintégration, bourgeonnement…). L’étape d’intégration elle-même fait intervenir de nombreux partenaires cellulaires et viraux interagissant avec l’IN. Certains sont connus et étudiés (LEDGF/P75, TNPO3…), mais il est très probable qu’un très grand nombre de ces partenaires soient encore méconnus malgré leur importance. Depuis quelque année, le rôle des modifications post-traductionnelles de l’IN a commencé à être étudié. En effet plusieurs études montrent que la régulation de l’activité de l’IN pourrait se faire via de telles modifications. Mon travail de thèse s’est orienté sur trois questions autour de ces deux aspects. -Nous avons identifié plusieurs phosphorylations de l’IN par spectrométrie de masse et mis en évidence le rôle essentiel de la phopshorylation de la sérine 24 pour l’infection virale. -Le rôle de la kinase cellulaire GCN2 a été étudié. Nous avons pu montrer un effet restrictif de la protéine sur le cycle viral amenant à un arrêt de la traduction à un temps court après l’infection au VIH-1. L’interaction entre GCN2 et l’IN a été mise en évidence. L’étude du domaine d’interaction entre l’IN et GCN2 a permis la caractérisation d’un résidu essentiel de l’IN, le E85. -L’impact du facteur de réparation RAD51 sur la réplication virale a été étudié. Nous avons montré un effet inhibiteur de cette protéine. Ce travail a permis l’identification d’une molécule chimique RS-1 capable d’inhiber l’intégration dans les cellules infectées via la stimulation de RAD51. / The integrase (IN) of HIV-1 is a key enzyme of the viral cycle of HIV-1 since it catalyzes the stable integration of the viral genome into that of the infected cell. Furthermore, the IN also participates in many steps of the viral cycle (reverse transcription, import of preintegration complex, budding ...). The integration step itself involves many cellular and viral partners interacting with IN. Some of them are studied (LEDGF/p75, TNPO3 ...) but it is very likely that many of these partners are still unknown despite their importance. Recently, the role of post-translational modifications of the IN began to be studied. In fact several studies show that the regulation of the activity of IN could be done through such modifications.My thesis work focused on three issues: -We identified several phosphorylations of IN by mass spectrometry and identified the crucial role of serine 24 to viral infection. -The role of GCN2 cellular kinase was studied. We have shown a restrictive effect of the protein on the viral cycle leading to a translation stop in first hours following infection with HIV-1. The study of the interaction domain between IN and GCN2 allowed the characterization of a critical residue of IN, the E85. -The impact of RAD51 repair factor on viral replication was investigated. We have shown an inhibitory effect of this protein. This work allowed the identification of a chemical molecule RS-1 able to inhibit integration in infected cells through RAD51 stimulation.
2

Protéine kinase GCN2 et phosphorylation de l’intégrase du VIH-1 / Kinase GCN2 and the phosphorylation of HIV-1 integrase

Jaspart, Anaïs 12 December 2014 (has links)
L’intégrase (IN) du VIH-1 est une enzyme clé qui catalyse l’insertion stable du génome viral dans celui de la celluleinfectée. D’autre part, l’IN participe également à de nombreuses étapes du cycle viral telles que la transcriptioninverse ou la maturation virale. La compréhension des mécanismes impliqués dans la régulation de l’intégrationcellulaire au cours de l’infection est un enjeu important. L’IN fait partie du complexe de préintégration composé defacteurs cellulaires et viraux. La dynamique des interactions au sein de ce complexe régule les activités catalytiquesmais également non catalytiques de l’IN. C’est dans ce contexte de recherche de nouveaux cofacteurs de l’intégraseque nous avons identifié une interaction entre l’IN et la protéine Kinase GCN2.Mon travail de thèse s’est orienté sur trois questions autour de l’étude du rôle de cette interaction IN/GCN2.- Dans un premier temps, le rôle de la protéine kinase cellulaire GCN2 au cours du cycle viral a été étudié. Nousavons pu montrer que l’infection par le VIH-1 provoque un stress activant GCN2. Cette activation aboutit à uneinhibition de la traduction dès les premières heures de l’infection.- GCN2 est capable de phosphoryler l’IN du VIH-1 sur deux positions : les sérines en position 24 et 255. L’étude durôle de la phosphorylation de l’IN par GCN2 a permis de montrer que l’absence de phosphorylation de l’IN entraîneune stimulation de l’infection. GCN2 via la phosphorylation de l’IN a donc un effet restrictif sur l’infection par le VIH-1.- L’étude du domaine d’interaction entre l’IN et GCN2 a permis d’identifier un résidu essentiel de l’IN, l’acideglutamique en position 85 (E85). En effet, la mutation E85A de l’IN entraîne la production de virus non infectieux,suite à un défaut de maturation / HIV-1 integrase (IN) catalyzes the integration of the viral DNA into the cellular genome. Besides, IN is also involved inother steps of the viral life cycle like the reverse transcription or the viral maturation. Our group is interested in themechanisms involved in the regulation of cellular integration during the infection. IN is part of a pre-integrationcomplex composed of cellular and viral proteins. The dynamic of these interactions regulates IN activities but also noncatalytic activities such as nuclear import and tethering of the complex to the integration site. During theidentification of news partners of IN, an interaction between IN and the kinase GCN2 was characterizedMy PhD project is composed of 3 topics:- The role of the cellular kinase GCN2 was studied during the viral cycle. We showed that GCN2 is activated uponHIV-1 infection. This activation leads to a general decrease of cellular translation during the first hours of infection.-GCN2 is able to phosphorylate IN on two positions: the serines in position 24 and 255. The absence of INphosphorylation causes a stimulation of HIV-1 infection. We demonstrate that GCN2 affects the viral cycle via thephosphorylation of IN.- Binding domain analysis between IN and GCN2 led to the identification of a critical residue of IN, the glutamicacid in position 85 (E85). Mutations E85A of IN impair the viral production by inhibiting the viral maturation.
3

The effect of alternative splicing on key regulators of the integrated stress response

Alzahrani, Mohammed 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The protein kinase General control non-derepressible-2 (GCN2) is a key regulator of the Integrated stress response that responds to various stress signals, including nutritional deprivation. As a result of high levels of uncharged tRNAs during amino acid depletion, GCN2 phosphorylates serine-51 of the α subunit of eukaryotic initiation factor-2 (eIF2), a translation factor that delivers initiator tRNA to ribosomes. Phosphorylation of eIF2α inhibits general translation, which conserves energy and nutrients and facilitates reprogramming of gene expression for remediation of stress damage. Phosphorylation of eIF2α also directs preferential translation of specific transcription factors, such as ATF4. ATF4 reprograms gene expression to alleviate stress damage; however, under chronic stress, ATF4 directs the transcriptional expression of CHOP, which can trigger apoptosis. Because multiple stresses can induce eIF2α phosphorylation and translational control in mammals, this pathway is referred to as the Integrated stress response. GCN2 and CHOP are subject to alternative splicing that results in multiple transcripts that differ in the 5'-end of the gene transcripts. However, the effect of the different GCN2 and CHOP isoforms on their function and regulation have not been investigated. Our data suggests that GCN2 is alternatively spliced into five different transcripts and the beta isoform of GCN2 is most abundant. Also alternative splicing of CHOP creates two CHOP transcripts with different 5'-leaders encoding inhibitory upstream open reading frames that are critical for translational control of CHOP during stress. This study suggests that alternative splicing can play an integral role in the implementation and regulation of key factors in the Integrated stress response.
4

Structural and functional characterisation of the nutrient sensing kinase GCN2

Inglis, Alison January 2018 (has links)
A cell’s ability to recognise and respond to changes in its environment is crucial to its survival. The availability of nutrients is a fundamental part of the environment, and so cells must be able to identify when they are plentiful and when they are scarce, and adapt accordingly. GCN2 is a key protein kinase within the eukaryotic proteome, and it is activated by a drop in the intracellular concentration of amino acids. When activated, GCN2 phosphorylates the translation initiation factor eIF2, initiating the Integrated Stress Response. This causes the global inhibition of protein synthesis and the upregulation of stress response pathways. GCN2 has been implicated in a wide range of cellular processes in health and diseases, including the development of pulmonary veno-occlusive disease, neurological degeneration and cancer. The molecular mechanisms that control the regulation and activation of GCN2 remain unclear. Some insights have been provided through genetic experiments on yeast, but the complexities of the regulatory pathways have made it difficult to decipher precise mechanistic details. For this reason, the aim of this project was to characterise the human GCN2 kinase both functionally and structurally, and to investigate the molecular mechanisms that enable it to act as a sensor of nutritional stress. This thesis describes the development of a system to reconstitute GCN2 activation using purified components, allowing the effects of different regulators to be tested and characterised. Insights from these data alongside structural insights into the kinase allow the proposal of a model concerning how GCN2 can sense amino acid deprivation in response to various regulatory signals. While GCN2 is activated by nutritional stress, mammalian cells have evolved a panoply of responses to environmental stress. Hsp90 is a chaperone that is required for the stability and maintenance of approximately 60 % of the human kinome, yet how it recognises client kinases is still unclear. The final chapter of this thesis describes the use of biochemical methods in combination with HDX-MS to characterise the interactions between Hsp90’s co-chaperone Cdc37 and client kinases. These analyses enabled the identification of a correlation between protein stability and dependence on Hsp90/Cdc37, and revealed that Cdc37 binding causes a dramatic conformational remodelling of the N-lobe of the kinase.
5

Human keratinocytes utilize the integrated stress response to adapt to environmental stress

Collier, Ann E. 03 May 2017 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Human skin, consisting of the outer epidermis and inner dermis, serves as a barrier that protects the body from an onslaught of environmental stresses. Keratinocytes in the stratified epidermis undergo sequential differentiation that consists of multiple layers of cells differing in structure and function. Therefore, keratinocytes must not only combat environmental stress, but need to undergo massive changes in gene expression and morphology to form a proper barrier. One mode by which cells cope with stress and differentiation is through phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α-P), which causes global inhibition of protein synthesis coincident with preferential translation of select gene transcripts. Translational repression allows stressed cells to conserve energy and prioritize pro-survival processes to alleviate stress damage. Since eIF2α kinases are each activated by distinct types of stress, this pathway is referred to as the Integrated Stress Response (ISR). We sought to identify the roles of the ISR in the keratinocyte response to the stresses associated with differentiation and ultraviolet B (UVB) irradiation. In this thesis, we show that both general and gene-specific translational control in the ISR are activated following differentiation or UVB irradiation of human keratinocytes. ISR deficiency through genetic modifications or pharmacological interventions caused severe divergence from the appropriate keratinocyte response to differentiation or UVB. Differentiation genes were selectively translated by eIF2α-P, and inhibition of the ISR diminished their induction during differentiation. Furthermore, loss of the eIF2α kinase GCN2 (EIF2AK4) adversely affected the ability of keratinocytes to stratify in three dimensional cultures. Our analysis also revealed a non-canonical ISR response following UVB irradiation, in which downstream factors ATF4 (CREB2) and CHOP (DDIT3/GADD153) were poorly expressed due to repressed transcription, despite preferential translation in response to eIF2α-P. The ISR was cytoprotective during UVB and we found that eIF2α-P was required for a UVB induced G1 arrest, cell fate determination, and DNA repair via a mechanism involving translational control of human CDKN1A (p21 protein) transcript variant 4 mRNA. Collectively, this thesis describes novel roles for the ISR in keratinocyte differentiation and response to UVB, emphasizing the utility of targeting translational control in skin disease therapy.
6

The Essential Role of the Non-Essential Amino Acid Asparagine in Lymphoid Malignancies

Srivastava, Sankalp 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Cancer cells display increased metabolic demands to support their proliferation and biosynthetic needs. It has been extensively shown in cancers, that amino acids have functions beyond the role of mRNA translation. The breadth of functions makes amino acid restriction an effective strategy for cancer therapy; hence an important line of research involves targeting amino acid acquisition and metabolism therapeutically. Currently, asparagine depletion via L-Asparaginase in acute lymphoblastic leukemia (ALL) remains the only clinically approved therapy to date. In the first project, we showed that ALL cells are auxotrophic for asparagine and rely on exogenous sources for this non-essential amino acid. However, sensitivity to L-Asparaginase therapy is mitigated by the expression of the enzyme asparagine synthetase (ASNS), involved in de novo asparagine biosynthesis. We showed that this adaptive response requires two essential steps; demethylation of the ASNS promoter and recruitment of activating transcription factor 4 (ATF4) to the promoter to drive ASNS transcription. Our follow-up study in ALL cells showed that asparagine bioavailability (through de novo biosynthesis or exogenous sources) is essential to maintain the expression of the critical oncogene c-MYC. c-MYC is a potent transcription factor and is dysregulated in over 60% of cancers, including hematopoietic malignancies. We showed that this regulation by asparagine is primarily at the translation level and c-MYC expression is rescued only when exogenous asparagine is available or when cells can undertake de novo biosynthesis. At the biochemical level, asparagine depletion also causes an induction of ATF4 mediated stress response and suppression of global translation mediated by decreased mammalian target of rapamycin complex 1 (mTORC1) activity. However, we found that neither inhibition of the stress response or rescuing global translation rescued c-MYC protein expression. We also extended this observation to c-MYC-driven lymphomas using cell lines and orthotopic in vivo models. We showed that genetic inhibition of ASNS or pharmacological inhibition of asparagine production can significantly limit c-MYC protein and tumor growth when environmental asparagine is limiting. Overall, our work shows an essential role for asparagine in lymphoid cancers and has expanded on the usage of L-Asparaginase to resistant leukemias and lymphomas.
7

The Role of IFRD1 during the Integrated Stress Response

Ndum, Ogechukwu S. 06 July 2010 (has links)
No description available.
8

The Roles of Two Different Pathways in Hypoxia: p53/HDM2 and PERK/GCN2/eIF2α

Liu, Yan 21 September 2009 (has links)
No description available.
9

Rôle des acides aminés dans la limitation de l’adiposité sous régime hyperprotéique. / Role of dietary amino acids in the limitation of adiposity under a high protein diet.

Chalvon-Demersay, Tristan 24 November 2016 (has links)
Plusieurs études ont montré que certaines kinases situées dans le foie, « mammalian target of rapamycin » (mTOR), « adenosine monophosphate-activated protein kinase » (AMPK) et « general control non-depressible kinase 2 » (GCN2) répondent à la disponibilité en acides aminés.L’objectif de nos études a été de préciser le rôle de deux de ces voies, l’AMPK et GCN2, dans les adaptations du métabolisme énergétique et de la synthèse protéique en réponse aux variations en protéines du régime. Pour cela, des souris de type sauvage et des souris KO n’exprimant plus la voie AMPK ou GCN2 dans le foie ont été nourries pendant trois semaines avec un régime faible, normal ou fort en protéines. Les analyses ont montré que les souris KO-AMPK foie spécifique et nourries sous régime normoprotéique adaptent leur métabolisme hépatique notamment en sécrétant le facteur fibroblastique FGF21 ce qui leur permet de compenser l’absence d’AMPK et de présenter des profils d’oxydation normaux.Au contraire, les souris KO-AMPK foie spécifique nourries avec des régimes faibles ou forts en protéines présentent des altérations des profils d’oxydation des lipides et des glucides liées à une absence de modification du métabolisme hépatique.La délétion de GCN2 dans le foie, quant à elle, n’a d’effet que sous régime faible en protéines : les souris KO-GCN2 foie spécifique présentent une plus faible oxydation lipidique et une plus forte oxydation glucidique que les souris sauvages en période postprandiale dû à l’absence d’induction de la sécrétion de FGF21.Concernant le métabolisme des protéines, les kinases GCN2 et AMPK ne semblent pas impliquées dans l’intensité du flux de synthèse protéique dans le foie et en périphérie dans le muscle en période postprandiale.En conclusion, ces travaux montrent que les délétions de l’AMPK et de GCN2 hépatiques affectent le métabolisme énergétique mais pas le métabolisme protéique et que les conséquences dépendent de la composition du régime. / Several studies have reported that some kinases located in the liver respond to the availability of amino acids. These kinases are mammalian target of rapamycin '(mTOR), "adenosine monophosphate-activated protein kinase" (AMPK) and "general control non-depressible kinase 2" (GCN2).The aim of our study was to clarify the role of two of these signaling pathways, AMPK and GCN2 in the adaptations of energy and protein metabolism in response to the modulation of dietary protein content. Wild-type and liver AMPK-deficient or liver GCN2-deficient mice were fed either a low, a normal or high protein diet during three weeks. Analyzes showed that liver AMPK-deficient mice fed under a normo-protein diet exhibit an adapatation of liver metabolism and secret FGF21 which enables them to have normal postprandial oxidation profiles.In contrast, liver AMPK-deficient mice fed a low or a high protein diet exhibit an alteration in postprandial oxidation profiles. The deletion of GCN2 in the liver only has an effect under low protein diet as liver GCN2 deficient mice have a lower lipid oxidation and a higher carbohydrate oxidation linked to the absence of FGF21 secretion. Concerning protein metabolism, AMPK and GCN2 do not seem to be involved in protein synthesis rate in the posrprandial period in the liver and periphery in the postprandial muscle. In conclusion, these studies show that hepatic AMPK and GCN2 deletions affect energy metabolism, but not protein metabolism and that the consequences depend on diet composition.
10

Integration of general amino acid control and TOR regulatory pathways in yeast

Staschke, Kirk A. January 2010 (has links)
Thesis (Ph.D.)--Indiana University, 2010. / Title from screen (viewed on July 21, 2010). Department of Biochemistry and Molecular Biology, Indiana University-Purdue University Indianapolis (IUPUI). Advisor(s): Ronald C. Wek, Howard J. Edenberg, Peter J. Roach, Martin Bard. Includes vitae. Includes bibliographical references (leaves 125-132).

Page generated in 0.0238 seconds