Spelling suggestions: "subject:"potentiel oxydant"" "subject:"pontentiel oxydant""
1 |
Pollution atmosphérique particulaire : développement de méthodologies non-invasives et acellulaires pour l’évaluation de l’impact sanitaire / Particle pollution : development of non-invasive and acellular assays for health impact assessment.Calas, Aude 21 December 2017 (has links)
Grâce à des études de processus in vitro, on a pu montrer que les effets sanitaires des particules atmosphériques (aérosols) sont principalement attribués à leur potentiel inflammatoire via les espèces oxydantes qu’ils véhiculent : métaux et molécules organiques, principalement. Les maladies déclenchées diffèrent ensuite régionalement selon les mélanges spécifiques des différentes sources de pollution, la durée d’exposition et la susceptibilité des personnes. Les paramètres clefs à quantifier sont donc la bioaccessibilité (fraction potentiellement réactive de l’aérosol) et la capacité oxydante intrinsèque des aérosols afin de prédire leur toxicité. A cette fin, des tests non invasifs, c’est-à-dire effectués sur le mélange de polluants lui-même et non pas sur l’individu, ont été récemment développés (Cho et al. 2005; Sauvain et al. 2009; Denys et al. 2009; Li et al. 2003; Uzu et al. 2011). Peut-on les utiliser en l’état alors que la composition chimique des aérosols diffère drastiquement en fonction de l’environnement? On sait notamment que les bactéries présentes dans l’air sont capables d’abaisser la capacité oxydante des nuages, en est-il de même pour les particules (Vaïtilingom et al. 2012)? Peut-on relier ces tests à certaines espèces caractérisées chimiquement et/ou à des sources spécifiques de PM (Particulate Matter) ? Ce sont des questions préalables au développement d’une évaluation systématique des effets sanitaires des polluants atmosphériques, qui sont l’objet de programmes de recherche très actifs dans de nombreux groupes internationaux, mais encore très peu abordés en France. Elles doivent être prises en compte avant que ne soit développées des campagnes à grande échelle (risque sanitaire, épidémiologie...) qui pourront être mises en oeuvre en partenariat avec les réseaux de mesure de la qualité de l’air dans les années à venir (Kelly and Fussell 2012).Ce projet de thèse vise à mettre en place de nouveaux outils caractérisant la qualité de l’air et son impact biologique, avec les objectifs suivants :-Optimiser et valider un test d’évaluation du potentiel oxydant des aérosols suivant différents types de mélanges ;-Relier ces « proxy » de l’impact sanitaire à la chimie des particules et à la part attribuable des PM selon leurs sources. / In vitro studies have shown that the health effects of airborne particles (aerosols) are mainly attributed to their inflammatory potential due to the oxidative species they carry on: mostly metals and organic molecules. Diseases triggered then, regionally differ depending on the specific mixtures of different sources of pollution, duration of exposure and susceptibility of individuals. Key parameters to investigate are the bioaccessibility (reactive fraction of the aerosol) and the PM (Particulate matter) oxidative potential to predict aerosol toxicity. To this end, non-invasive tests, that is to say made on the mixture of pollutants itself and not on human or cells, have recently been developed (Cho et al 2005, Sauvain et al 2009, Denys et al 2009, Li et al 2003, Uzu et al 2011). Can we use them evenly, since the chemical composition of aerosols differs drastically between regional areas? We know that such bacteria present in the air are able to lower the oxidative capacity of clouds. Is it the same for particles (Vaïtilingom et al. 2012)? Can we connect these tests to some species or specific sources of identified PM? These preliminary questions need to be addressed before developing a systematic assessment of health effects of air pollutants, which are the subject of very active research programs in many international groups, but poorly discussed in France. They must be taken into account before being developed for large-scale campaigns (health risk, epidemiology...) that can be implemented in partnership with the networks of air quality measurment in the coming years (Kelly and Fussell 2012).This PhD project aims to develop new tools characterizing the air quality and its biological impact, with the following objectives:- Optimize and validate a test evaluation of oxidative potential of aerosols following different types of mixtures;- Connect the "proxy" of the health impact of chemicals and particles attributable PM according to their origin.
|
2 |
Processus de transfert vers l'atmosphère et de l'impact sanitaire des émissions biogéniques particulaires / Atmospheric transfer and health impacts of particulate biogenic emissionsSamaké, Abdoulaye 18 November 2019 (has links)
Les particules en suspension dans l’air (notées « PM » pour « Particulate matter ») sont aujourd’hui au cœur des préoccupations sociétales en raison de leur impact majeur sur la santé publique et leur forte participation au changement climatique. La matière organique (MO) représente généralement la première composante en masse des PM mais reste encore très mal appréhendée, en particulier la fraction organique d’origine biogénique primaire (PBOA). Des sucres primaires sont proposés comme des traceurs moléculaires pour étudier les processus de transport atmosphérique ainsi que pour estimer la contribution des PBOAs à la masse totale des PM. Cependant, les connaissances sont encore très limitées sur leurs distributions spatiales et temporelles (i.e., cycles journaliers, saisonniers et annuels), leurs principales sources d’émissions, ou encore les facteurs environnementaux qui déterminent leurs concentrations atmosphériques. Par ailleurs, si la comprehension du potentiel oxydant (PO) —proxy de l’effet sanitaire des PM— inhérent à la composante chimique des aérosols a relativement bien avancé ces dernières années, la contribution de cette fraction PBOA est encore est très mal connue. Ces différents aspects constituent les objectifs de ce travail de thèse. D’un point de vue méthodologique, nos questions ont été abordées par une approche interdisciplinaire, qui a impliquée l’exploitation statistique d’une large base de données et le couplage de campagnes de terrain spécifiques avec la mise en œuvre d’une stratégie expérimentale novatrice développée pour l’étude simultanée des caractéristiques chimiques et microbiologiques des échantillons prélevés.Dans un premier travail basé sur l’exploitation d’une large base de données, nous avons montré que les PBOAs constituent une fraction très importante des PM en France, independamment de la typologie de l’environnement, contribuant en moyenne annuelle à 13 ± 4 % de la MO dans les PM10. On met en évidence une similitude entre les évolutions temporelles de concentrations et de ratios entre sucres primaires pour des sites localisés dans une même région géographique (jusqu’à une distance inter-sites d’environ 200 km). Ces observations indiquent que la source PBOA est très homogène spatialement sur des distances cohérentes avec celle de grands types d'écosystèmes. Cette observation a ensuite été validée par une expérimentation basée sur deux échantillonnages annuels de terrain qui nous a permis de démontrer (i) que les évolutions journalières des concentrations atmosphériques en sucres primaires sont déterminées par seulement quelques taxons microbiens atmosphériques, variables d’un point de vue regionale ; et (ii) que ces taxons proviennent respectivement de la flore locale et régionale pour les sites d’étude qui sont directement influencés et non par les activités agricoles. Enfin, dans le cadre d’étude de PO, nos résultats ont permis de démontrer (i) que tous les bioaérosols modèles testés possèdent un PO intrinsèque significatif, comparable pour certaines espèces à celui de composants chimiques atmosphériques modèles connus pour leur forte reactivité redox ; et (ii) qu’ils sont capables d’influencer significativement le PO des PM chimiques modèles ou collectées en condition réelle.Ces travaux apportent un nouveau regard sur l’importance massique des PBOAs et des nouvelles connaissances sur les sources et processus dominants conduisant à leur introduction dans l’atmosphère, ainsi que l’influence des facteurs environnementaux sur ces processus. L’ensemble des résultats de ce travail plaide pour une prise en compte systematique des PBOAs dans les modèles de chimie atmosphérique pour une meilleure prédiction de la qualité de l’air. / Airborne particles (called « PM » for Particulate matter") are nowadays at the core of societal concerns because of their major impact on public health and their strong participation in climate change. Organic matter (OM) generally represents the first mass component of PM but it is still poorly understood, in particular the organic fraction from primary biogenic origin (PBOA). Some specific primary sugars are proposed as molecular tracers to study the atmospheric transport processes as well as to estimate the contribution of PBOAs to the total mass of PM. However, knowledge is still very limited about their spatial and temporal distributions (i.e., daily, seasonal and annual cycles), their main emission sources, or the environmental factors that drive their atmospheric concentrations. Moreover, although the understanding of the oxidative potential (OP) —a proxy of the health effect of PM— inherent in the chemical component of aerosols has progressed quite well in recent years, the contribution of this PBOA fraction is still very poorly understood. These aspects constitute the main objectives of this thesis work. From a methodological point of view, our questions were addressed by an interdisciplinary approach, which involved the statistical exploitation of a large database and the coupling of specific field campaigns with the implementation of an innovative experimental strategy developed for the simultaneous study of the chemical and microbiological characteristics of the samples collected.In a first work based on the exploitation of a large database, we showed that PBOAs constitute a very important fraction of PM in France, regardless of the typology of the environment, contributing on average to 13 ± 4% of the annual MO in PM10. We observed a synchronous temporal trends in both concentrations and ratios between primary sugars species for sites located in the same geographical region (up to an inter-site distance of about 200 km). These observations indicate that the PBOA source is very spatially homogeneous over distances consistent with those of large ecosystem types. This observation was then validated by an experimental approach based on two annual field sampling studies that allowed us to demonstrate (i) that daily changes in atmospheric concentrations of primary sugars are drived by only a few regionally variable atmospheric microbial taxa; and (ii) that these taxa come from local and regional flora for study sites that are directly influenced and not by agricultural activities, respectively. Finally, in the framework of the OP study, our results demonstrated (i) that all the tested model bioaerosols have a significant intrinsic OP, which is comparable for some species to the model atmospheric chemical components known for their high redox reactivity; and (ii) that they can significantly influence the OP of chemical PM models or sampled under real ambient conditions.This work provides a different look into the mass importance of PBOAs and new insights into the dominant sources and processes leading to their introduction into the atmosphere, as well as the influence of environmental factors on these processes. Alltogether these results argue for a systematic consideration of PBOAs in atmospheric chemistry models for better prediction of air quality.
|
Page generated in 0.0713 seconds