Spelling suggestions: "subject:"power divider"" "subject:"power privider""
1 |
Design and Implementation of Radio Frequency Power Feeding Networks for Antenna Array Applications: Simulation and Measurements of Multiport, Equal and Unequal, Fixed and Reconfigurable Radio Frequency Power Feeding Networks for Narrow and Ultra-Wideband ApplicationsAli, Ammar H.A. January 2018 (has links)
Power dividers are vital components and widely used in radio technology, such
as antenna arrays, power amplifiers, multiplexers and mixers. A good example is
the well-known Wilkinson power divider with its distinctive feeding network
characteristics. A comprehensive review indicated that limited research is carried
out in the area of planar multiport and reconfigurable power dividers in terms of
the power levels between output ports.
The main objectives of this work were to develop a small size power divider, a
planer multi-output ports power divider and a power divider with a reconfigurable
power division ratio. These power dividers were designed to operate over either
an ultra-wideband frequency (3.1-10.6 GHz) or WLAN bands (2.4 or 5.2 GHz).
A novel multi-layered topology solved the complexity of interconnecting isolation
resistors by introducing an additional layer below the ground layer. The prototype
was fabricated and tested to validate the results. The measurements and
simulation were in good agreement.
Finally, a novel uniplanar power divider with reconfigurable output power level
difference was developed. The configurability feature was achieved by tuning the
quarter wave transformer using one varactor diode. The power divider was
applied to improve a full duplex system cancellation performance at the receiver
element caused by interference from in-site transmitting antennas.
This study investigated fixed power dividers, multi-output power dividers and
reconfigurable power dividers. The measurements validated by the simulation
results and applications proved the designed power dividers could be used in
practical applications. / Higher Committee for Education Development (HCED), Iraq
|
2 |
Novel Design of a Wideband Ribcage-Dipole Array and its Feeding NetworkHarty, Daniel D. 14 January 2011 (has links)
In this thesis the focus was on the design, fabrication, and tests of the feeding networks individually and within an array system. The array feeding network is a corporate-fed type utilizing equal-split, stepped-multiple sections of the conventional Wilkinson power divider in microstrip form with a unique topology. The feeding network was specifically designed for a broadside relatively small linearly-polarized wideband UHF non-scanning array for directed power applications that uses an array radiator with a new volumetric ribcage dipole configuration. The array has a large impedance bandwidth and consistent front lobe gain over the wide frequency band. Theoretical and experimental results describing the performance of the array feeding network and the array are presented and discussed.
|
3 |
Single-band and Dual-band Beam Switching Systems and Offset-fed Beam Scanning ReflectarrayLee, Jungkyu 2012 May 1900 (has links)
The reflectarray has been considered as a suitable candidate to replace the conventional parabolic reflectors because of its high-gain, low profile, and beam reconfiguration capability. Beam scanning capability and multi-band operation of the microstrip reflectarray have been main research topics in the reflectarray design. Narrow bandwidth of the reflectarray is the main obstacle for the various uses of the reflectarray. The wideband antenna element with a large phase variation range and a linear phase response is one of the solutions to increase the narrow bandwidth of the reflectarray.
A four beam scanning reflectarray has been developed. It is the offset-fed microstrip reflectarray that has been developed to emulate a cylindrical reflector. Unlike other microstrip reflectarrays which integrates phase tuning devices such as RF MEMS switches and another phase shifters to the reflectarray elements and control the reflected phase, the beam scanning capability of the reflectarray is implemented by a phased array feed antenna. This method can reduce the complexity of the design of the beam switching reflectarray. A simple method has been investigated to develop multi-band elements in this dissertation. In approach to increase the coverage of the operation bands, a six-band reflectarray has been developed with two layers. Each layer covers three frequency bands.
A Butler matrix is one of the useful beamforming networks for a phased array antenna. A Double-Sided Parallel-Strip Line (DSPSL) is adapted for the feeding network of eight array elements. The DSPSL operate very well to feed the microstrip antenna array over the bandwidth to reduce the sidelobe level and a high gain. In another topic of a Butler matrix, a dual-band Butler matrix has been proposed for multi-band applications. A modified Butler matrix is used to reduce a size and a sidelobe level.
The bandwidth of the microstrip antenna is inherently small. A broadband circularly polarized microstrip antenna with dual-offset feedlines is introduced in this dissertation. Aperture-coupled feed method is used to feed the stacked patch antennas and a slotcoupled
directional coupler is used for the circularly polarized operation.
The research presented in this dissertation suggests useful techniques for a beam scanning microstrip reflectarray, phased array antenna, and wideband antenna designs in the modern wireless communication systems.
|
4 |
Implementation of a Microstrip Square Planar N-Way Metamaterial Power DividerZong, Junyao January 2008 (has links)
The work done in this thesis focuses on the design of a square-shaped 20-way metamaterial power divider which is fabricated in microstrip technology and operates at 1 GHz. The divider comprises 12 square-shaped left-handed unit cells and 13 square-shaped right-handed unit cells, and these unit cells have the same size and are placed in a checker-board tessellation, where the left-handed unit cells are connected only to right-handed unit cells and vice versa. The divider is based upon the infinite wavelength phenomenon in two-dimensions, and this means that the insertion phase between any two ports of the left-handed unit cell is equal, but with opposite sign, to that of the right-handed unit cell. The divider gives an equal-amplitude equal-phase power division from the central input port to the output ports which are located on a straight line on each side. Thus, it is convenient to integrate with, or interconnect to, other planar circuits in a system, such as power amplifier modules. The design concept can be extended to an N-way power divider, where N = 4n and n is an odd integer.
|
5 |
Měření parametrů optických a opto-elektrických komponent / Measurement of optical and opto-electrical components parametersHorňáková, Veronika January 2020 (has links)
This diploma thesis deals with optical and optoelectronic components. The first part describes three selected optical and three optoelectronic components. Optical components include power divider, isolator and circulator. The optoelectronic ones are laser diode, photodetector and modulator. Basic measurement parameters were defined for each component. In the experimental part, four components from different manufacturers were measured. Selected components are power dividers, isolators, circulators and a laser diode. Subsequently, the measured parameters were compared with the catalog values.
|
6 |
Beam-forming module for backhaul link in a Relay-aided 4G networkPetropoulos, Ioannis, Voudouris, Konstantinos N., Abd-Alhameed, Raed, Jones, Steven M.R. 25 May 2015 (has links)
Yes / A novel beam-forming module based on Wilkinson power divider technology, including attenuators and phase shifter chips is designed, fabricated and evaluated to be incorporated in a Relay Station connecting it with the Base Station under a 4G network. The proposed module is a 1:8 port circuit, utilizing two substrates, providing approximately 700 MHz bandwidth over 3.5 GHz frequency band and less than −20 dB transmission line coupling. Moreover an external control unit that feeds the beam-forming module with code-words that define the proper amplitude/phase of the excitation currents is established and described. The presented module is connected to a planar array and tested for two beam-forming scenarios, providing satisfactory radiation patterns.
|
7 |
Design of Multi Band Microwave Devices Using Coupled Line Transmission LinesKatakam, Sri 05 1900 (has links)
Multi band technology helps in getting multiple operating frequencies using a single microwave device. This thesis presents the design of dual and tri band microwave devices using coupled transmission line structures. Chapter 2 presents the design of a novel dual band transmission line structure using coupled lines. In chapter 3, Design of a dual band branch line coupler and a dual band Wilkinson power divider are proposed using the novel dual band transmission line structure presented in the previous chapter. In chapter 4, Design of a tri band transmission line structure by extending the dual band structure is presented. The Conclusion and future work are presented in chapter 5.
|
8 |
Mode Matching Analysis and Design of Substrate Integrated Waveguide ComponentsKordiboroujeni, Zamzam 14 November 2014 (has links)
The advent of Substrate Integrated Circuit (SIC) technology, and specifically Substrate
Integrated Waveguide (SIW) technology has made it feasible to design and fabricate low loss and high quality factor (Q-factor) microwave and millimeter wave structures on a compact and integrable layout and at a low cost. The SIW structure is the planar realization of the conventional rectangular waveguide (RWG). In this technology, the side walls of the waveguide are replaced with two rows of metallic vias, which are connecting two conductor sheets, located at the top and bottom of a dielectric slab. The motivation for this thesis has been to develop an analytical method to efficiently analyze SIW structures, and also design different types of passive microwave components based on this technology.
As SIW structures are imitating waveguide structures in a planar format, the field
distributions inside these structures are very close to those in waveguides. However,
due to the very small substrate height in conventional planar technologies, and also
the existence of a row of vias, instead of a solid metallic wall, there is a reduced set of
modes in SIW compared to regular waveguide. This fact has given us an opportunity
to deploy efficient modal analysis techniques to analyze these structures. In this thesis, we present a Mode Matching Techniques (MMT) approach for the analysis of H-plane SIW structures.
One of the areas of application, which can significantly benefit from having an efficient analytical method, is designing and optimizing new circuits. Having such an analytical tool, which is faster than commercially available field solvers by an order of magnitude, new components can be designed, analyzed and optimized in a fast and inexpensive manner. Based on this technique, various types of passive microwave components including filters, diplexers, power dividers and couplers, some of which are among the first to be reported in SIW technology, are designed and analyzed in this thesis. Also based on this technique, the most accurate formula for the effective waveguide width of the SIW is presented in this thesis.
In order to provide means to excite and measure SIW components, transitions between
these structures and other planar topologies like microstrip and coplanar waveguide (CPW) are needed. More importantly, low-reflection transitions to microstrip are required to integrate SIW circuits with active components, and therefore it is vital to provide low-reflection transitions so that the component design is independent of the influences of the transitions. In this thesis, a new wideband microstrip-to-SIW transition, with the lowest reported reflection coefficient, is also introduced. / Graduate / 0544 / zkordi@ece.uvic.ca
|
9 |
Multi-Port Reflectometer in Multilayer Microstrip-Slot Technology for Ultra Wideband ApplicationsNorhudah Seman Unknown Date (has links)
A microwave reflectometer is an instrument to measure a complex ratio between reflected and incident waves at an input port of a uniform transmission line that is terminated in a Device Under Test (DUT). The conventional reflectometer is formed by a four-port network with two ports connected to a microwave source and DUT, and the remaining ports coupled to a heterodyne receiver which acts as a Complex Ratio Detector (CRT). By using the heterodyne receiver technique, the two microwave signals at the input to CRT are converted in the linear manner to an Intermediate Frequency (IF) of hundreds of kHz where they are processed using digital means. As the ratio of two original microwave signals has to be preserved at IF, a very advanced electronic circuitry is required to accomplish the linear conversion process. This complicated electronic circuitry leads to a large size of the conventional reflectometer and its high price tag. Many applications require compact-size and low-cost reflectometers. They can be built using N-port networks, with N being greater than 5, equipped only in scalar (power) detectors. The thesis describes the concept of a multi-port reflectometer which determines the complex reflection coefficient of DUT with the use of scalar detectors instead of the complex ratio detector. It is shown that this device can be designed using an assembly of linear circuits in the form of quadrature (Q) and/or divider (D) hybrids. Assuming ideal operation of these components, it is shown that the reflection coefficient of DUT can be determined using simple mathematical operations on the power values measured by scalar detectors. Alternatively, it can be obtained from the intersection of power circles in a complex reflection coefficient plane. These simple mathematical expressions can be used to obtain an approximate real-time operation of reflectometer. For more accurate results, the multi-port has to be calibrated using calibration standards. A review of full calibration methods for a multi-port reflectometer is presented. In order to obtain wideband performance, the multi-port reflectometer has to be formed by components all having wideband performance. To obtain its low manufacturing cost, these components should preferably be of planar format and lead to a full integration of reflectometer. The thesis investigates a variety of planar couplers and dividers which can offer wideband performances. However, not all of them can lead to a fully integrated multi-port reflectometer. In order to overcome this shortfall, a multilayer microstrip-slot technique is proposed and investigated to obtain wideband components that can lead to a full integration of multi-port reflectometer. It is demonstrated that through the use of multilayer microstrip-slot technique, ultra wideband microwave 3-dB couplers and two-way dividers of in-phase or out-of-phase type can be designed. It is shown that the chosen configurations of dividers are compatible with the 3-dB couplers so that a fully integrated reflectometer can be formed. This compatibility is accomplished through the use of suitably designed microstrip to slotline transitions. An attractive feature of the designed couplers and dividers is that they are of sub-wavelength size and thus are very compact. A fine operation of these components is demonstrated via full electromagnetic wave simulations and experimental tests over and ultra wide frequency band of 3.1 to 10.6 GHz. Rogers substrate RO4003 featuring a relative dielectric constant of 3.38 and a loss tangent of 0.0027 is chosen as a microwave substrate for the design of these components. The design and analysis are carried out with the commercially available full EM simulator CST Microwave Studio while the experimental tests are done with the Vector Network Analyser, HP8510C. By using these components, an ultra wideband complex ratio measuring unit (CRMU), which is the heart of a multi-port reflectometer, is designed. This CRMU is fully integrated and of compact size. Its operation over an ultra wide frequency band is demonstrated via simulations. A particular attention is paid to its real-time mode of operation. Using this mode of operation, the complex ratio of two waves can be displayed on an oscilloscope using an analog electronics performing simple mathematical operations on the measured powers by detectors. While discussing the operation of CRMU, the attention is paid to the location and spacing of power circles centres (q-points) which are used for geometrical interpretation of operation of this device. Good operation of CRMU in this approximate operation mode indicates that the device will operate very well when it is fully calibrated. For simulations of CRMU, CST Microwave Studio, Agilent’s Advanced Design System (ADS) and MATLAB software are applied. Having accomplished the successful design of CRMU, the last step includes the formation of a fully integrated multi-port reflectometer. To this purpose an extra circuitry including multilayer microstrip-slot 3-dB couplers is added to CRMU. The purpose of this additional circuitry is to reroute the incident and reflected signals from the DUT to the input ports of CRMU. A few configurations of multi-port relectometer formed by multilayer microstrip-slot couplers or dividers are investigated via simulations with respect to real-time mode of operation. Then, the best performing configuration is selected for the final development. The device is manufactured in Rogers RO4003 substrate. Its S-parameters are measured with HP8510C analyser and compared with the simulated values. Having obtained a relatively good agreement between the simulated and measured results, the device is calibrated using multiple calibration standards. Its operation is verified for selected DUTs by comparing the measured reflection coeffcients with those obtained using the conventional VNA (HP8510C) over an ultra wide frequency band. A relatively good agreement is obtained between the two sets of measured results. The obtained results prove that the multilayer microstrip-slot technology can successfully be used for the development of a compact low-cost and fully integrated UWB multi-port reflectometer. Because of its compact size and good electrical performance, this device can be used in many microwave sub-systems offering a limited space for implementation of microwave measurements. The thesis shows that the accomplished multi-port device can also be used to build UWB communication transceivers. The concept of such UWB transceivers is addressed in the final sections of this thesis.
|
10 |
Multi-Function and Flexible Microwave DevicesZhou, Mi 12 1900 (has links)
In this dissertation, some multi-function and flexible RF/microwave devices have been studied to solve the issues in the modern microwave system designs. First, a power divider with two functions is proposed. The first function is a zero-phase delay power divider using zero-phase impedance transformer. The second function is a power divider with impedance transforming property. To achieve the first function, the two arms are treated as zero-phase impedance transformers. When the phase requirement is relaxed, the second function is obtained. Shunt transmission line stubs are employed to connect the isolation resistor, which provides great flexibility in the design. Then, a balun with transparent termination impedance and flexible open arms is designed. The design parameters of the balun are independent to the port impedance. This property allows the balun to work with different system impedances. Furthermore, the two output ports of the balun do not need to be connected together, which enables the device to have a very flexible structure. Finally, the continuous research of a tunable/reconfigurable coupler with equal output impedance is presented. In addition to the tunable/reconfigurable responses, unequal output impedance property is added to the microstrip line coupler. To shrink the size at the low frequency and make it easy for fabrication at higher frequency, the coupler is redesigned using lumped components. To validate the design theories, simulations are carried out. Moreover, prototypes of the power divider and the balun are fabricated and characterized. The simulation and measurement results match well with the theoretical calculation.
|
Page generated in 0.0638 seconds