• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modified simultaneous perturbation stochastic approximation method for power capture maximization of wind turbines

Wang, Yang January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Warren N. White / As traditional resources are becoming scarce, renewable energy is a recent topic receiving greater concern. Among the renewable energies, wind power is a very popular type of energy extracted from wind which is readily available in the environment. The use of wind power all over the world is receiving increased attention. Horizontal axis wind turbines are the most popular equipment for extracting power form the wind. One of the problems of using wind turbines is how to maximize the wind power capture. In this paper, a method for maximizing the rotor power coefficient of a wind turbine is proposed. Simultaneous Perturbation Stochastic Approximation (SPSA) is an efficient way for extremum seeking. It is different from the classical gradient based extremum seeking algorithms. For maximizing the rotor power coefficient, it only needs two objective function measurements to take a step toward the next extremum approximation. The one measurement SPSA is a modification of SPSA method developed in this work. Instead of using measurements of two positions occurring at random directions away from the current position, it uses the measurement of one position in a random direction and the measurement of the current position to estimate the gradient. Usually, the rotor power coefficient is not easily measurable. For speed regulation, a nonlinear robust speed controller is used in this work. The controller produces an estimate of the aerodynamic torque of wind turbine. The quality of this estimate improves with time. From that, a good estimate of power coefficient can be obtained. Simulations in MATLAB are executed with a model of a wind turbine based on its dynamic equations. From simulations, it can be seen that the one measurement SPSA method works very well for the wind turbine. It changes the tip speed ratio and blade pitch simultaneously, and the power coefficient reaches its maximum value quickly in a reliable manner. The power capture optimization is then implemented in FAST, a turbine simulation model created by NREL which is used to test the 5MW NREL reference turbine. From the results, it is evident that the wind turbine reaches the maximum power coefficient rapidly.
2

Assessment of a nearshore modular flap-type wave energy converter

Wilkinson, Laurie Fletcher January 2018 (has links)
This thesis presents an assessment of a modular flap-type wave energy converter. Comparisons are made to an equivalent width rigid device. All quoted relative difference results here use the rigid device as the reference point. The variables that are evaluated are the power capture and surge and yaw foundation loads. The power capture is evaluated at both module and device level, while the foundation loads are assessed just at the device level. The investigation is carried out through testing of a 30th scale physical model in a wave tank. A key output from the work is the development of the physical model. The model consists of six flap modules, mounted on a common base structure. Each module contains a highly controllable and compact power take off system. The devices are tested in a range of conditions, primarily consisting of regular waves of different period and direction. The damping strategy employed is the simplest approach available, setting the achievable damping level on each module to be the same. For the modular device in head-on regular waves, the results show that the power capture increases significantly moving from the outer to the central modules. On average, the central pair of modules produce 68 % of the total mean power, the inner modules 25 % and the outer modules only 7 %. Between the devices, it is shown that the power captures in head-on waves are similar, with a mean relative difference of -3 %, with +/-5 % uncertainty. Thus, no statistically significant change in power capture is shown. In off-angle waves, the mean relative difference is –1 %, with +/-4 % uncertainty. However, for the highest wave direction that was tested in, 27.5 degrees, the modular device outperforms the rigid flap, by 10 %, with uncertainty of +/-1 %. The surge foundation loads are shown to be very similar for the two devices - in head-on waves, the mean relative difference is +2 %. Depending on the level of applied damping, however, significant differences in the yaw foundation loads are shown. Using damping where the power capture is maximised, the yaw loads increase by a mean of 10 %; using damping where the power to load ratio is instead maximised, the modular yaw loads are 26 % lower. Finally, the economics of the power production is estimated through division of the power capture with a cost metric, the foundation loads. While this does not provide a full techno-economic assessment, it effectively captures the interdependency of the power capture and foundation loads for the devices. The mean relative differences in the power per load ratios of the devices are found to be similar across the wave conditions. In the head-on waves, the differences are between –8 and –0.4 %, depending on damping strategy; in the off-angle waves, the differences are between –6 and +10 %. For both sets of wave conditions, the modular flap performs better when the damping is set to maximise the ratio of power capture to foundation loads. The work concludes that the modular and rigid devices produce power and experience foundation loads at similar levels in head-on waves. Given the high power capture efficiency, nearshore location, simple mode of operation and high survivability of the flap-type WEC, this suggests that the modular device is a viable stand-alone concept. The work also finds that in off-angle waves, some benefits can be achieved with an appropriately damped modular system, notably in improved power capture and reduced yaw foundation loads. These could reduce the sensitivity that flap-type devices have in off-angle waves and allow expansion of the width and hence capacity of machines. Further work should extend the wave conditions tested in, by using more irregular and directional waves, and investigate more damping strategies and geometries. Economic assessment should also be carried out.
3

Master’s Thesis in Political Science Democratization in southern Africa: Process and Challenges : A case study of Zimbabwe’s divergent path in its democratic transition

Hällstrand, Dorcas January 2020 (has links)
Despite promising prospects to transition towards a democracy after attaining its independence in 1980, Zimbabwe somehow fell into authoritarian rule and became increasingly undemocratic compared to other countries in southern Africa. Therefore, this thesis seeks to understand why a “most likely” case of democratization in the region failed and instead slipped into authoritarianism between 1980 and 2000. The single case study investigates a set of elite level dynamics, using components of process tracing and case study techniques. The analysis is built upon a theoretical framework focusing on dimensions of power dynamics in terms of Bratton’s power capture, power division and power sharing along with Svolik’s politics of authoritarian rule and the dominant party system. The research indicates that the political party Zanu-Pf, under the leadership of Mugabe, has dominated the political arena since the first democratic elections of 1980. With the help of the party’s majority, the ruling elites captured, divided, shared and controlled power; to serve authoritarian ends that ensured regime survival at the expense of democracy.
4

Modelling and Simulation of a Power Take-off in Connection with Multiple Wave Energy Converters

Ghodrati, Ashkan, Rashid, Ahmed January 2014 (has links)
The objective of this thesis is to develop a model that will integrate multiple buoys to a power take-off hub. The model will be derived using a time domain analysis and will consider the hydraulic coupling of the buoys and the power take-off. The derived model is reproduced in MATLAB in order to run simulations. This will give possibility to conduct a parameter study and evaluate the performance of the system. The buoy simulation model is provided by Wave4Power (W4P). It consists of a floater that is rigidly connected to a fully submerged vertical (acceleration) tube open at both ends. The tube contains a piston whose motion relative to the floater-tube system drives a power take-off mechanism. The power take-off model is provided by Ocean Harvesting Technologies AB (OHT). It comprises a mechanical gearbox and a gravity accumulator. The system is utilized to transform the irregular wave energy into a smooth electrical power output. OHT's simulation model needs to be extended with a hydraulic motor at the input shaft. There are control features in both systems, that need to be connected and synchronized with each other. Another major goal within the thesis is to test different online control techniques. A simple control strategy to optimize power capture is called sea-state tuning and it can be achieved by using a mechanical gearbox with several discrete gear ratios or with a variable displacement pump. The gear ratio of the gear box can be regulated according to a 2D look up table based on the average wave amplitude and frequency over a defined time frame. The OHT power take-off utilizes a control strategy, called spill function, to limit the excess power capture and keep the weight accumulator within a span by disengaging the input shaft from the power take-off. This is to be modified to implement power limitation with regulation of the gear ratio of the gearbox. / +46736290781

Page generated in 0.0617 seconds