• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 164
  • 20
  • 20
  • 9
  • 8
  • 7
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 279
  • 279
  • 126
  • 54
  • 43
  • 37
  • 36
  • 36
  • 36
  • 36
  • 36
  • 34
  • 32
  • 27
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Costs and benefits of using fuel cells for stationary power generation at Marine Corps Logistics Base Barstow Maintenance Center /

Schendler, Phillip J. January 2002 (has links) (PDF)
Thesis (M.S. in Management)--Naval Postgraduate School, December 2002. / Thesis advisor(s): William R. Gates, David R. Henderson. Includes bibliographical references (p. 73-76). Also available online.
42

The geography of energy consumption of the Canadian metals processing industry

Caisley, George Anthony January 1967 (has links)
This study was initiated (a) to determine the types and quantities of energy consumed by the Canadian metal processing industry on a plant basis, (b) to examine the manner and extent to which the energy consumed varies spatially across Canada and (c) to determine the extent to which the industry contributes to the nation's total energy consumption as well as to its consumption of each energy source. The energy consumption mixes of individual plants were determined either empirically or by estimation from data obtained by a questionnaire and from the technical literature for the comminution, smelting, and refining stages of the lead, zinc, nickel, copper, aluminum, and primary iron and steel industries. The spatial variation of the consumption mixes for each metallurgical process was then delimited and illustrated cartographically. The specific and non-specific energy needs of each industry are identified in terms of the processes used at each production stage. It was found that the types and quantities of energy utilized by each plant depends upon the process’ specific energy needs and the availability of other energy forms. The metal processing industry was found to consume a significant proportion (8.2%) of Canada's energy consumption in 1965. In terms of individual sources of energy the industry consumed 23.4% of the national total consumption of electricity, 14.6% of coal and less than 3% of petroleum and natural gas. / Arts, Faculty of / Geography, Department of / Graduate
43

Estimation of wind energy near the earth's surface

Bootman, Steven Randall January 2011 (has links)
Typescript. / Digitized by Kansas Correctional Industries
44

The perception and management of pollution risks in Taiwan's electric utility

Sung, Martin (Ming-Che) January 1999 (has links)
This thesis is the study of the perception and management of pollution risks in Taiwan's electric utility in terms of a social science paradigm of risk. It represents the first examination of Feng Shui belief impact on Taiwanese risk behaviour in electric risk settings. The deep seated culture and widespread practice of Feng Shui in traditional Chinese society would lead to the assumption that Feng Shui belief should strongly influence Taiwan risk behaviour. This empirical study research revealed that Feng Shui belief is much less important to Taiwanese risk behaviour than might have been thought. Most of the variation in electric risk acceptability resulted from the influence of social equity and justice. This study also examined the literature between Feng Shui and risk. What emerged from this is the notion that Feng Shui can be regarded as helpful complementary thinking in a social science paradigm of risk. This study suggests a number of important implications for Taipower Company and risk regulators. The choice about siting of a power plant should take account of the concept of Feng Shui the boundary rather than the concept of the fixed and administrative boundary. Implication also emerged in relation to social trust and the understanding of local residents' risk perception
45

Germany's energy demand and supply until 2020 : implications for Germany's foreign energy policy

Stellmann, Lars 06 1900 (has links)
Approved for public release; distribution is unlimited / The purpose of this thesis is to provide an overview of Germany's energy supply options until 2020, the political implications and the respective consequences for Germany's foreign energy policy. The oil and gas supply situation for Germany will become more complex in the upcoming decade. Since oil imports from the UK and Syria are expected to cease after 2005, 18% of the current oil supply will have to be substituted within this decade. Russia may not be available to provide the amount necessary. The gas situation is somewhat less urgent, as a supply shift will have to take place only after 2010, when the Norwegian and Dutch gas reserves cease to satisfy the export demand. The only regions that will be able to provide oil and gas on a global level to meet the growing world demand will be the Middle East, Russia and other Caspian Sea neighbors. Germany's welfare is directly dependent on its economical success. As a highly industrialized country, Germany should take a tremendous interest not only in the future development of the international energy market, but also in attempting to influence the development immediately following that of its domestic needs. / Lieutenant Commander, German Navy
46

The energy transition and the economy : a system dynamics approach

Sterman, John January 1982 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Sloan School of Management, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND DEWEY. / Bibliography: leaves 371-388. / by John David Sterman. / Ph.D.
47

Design, Synthesis and Evaluation of Liquid-like Nanoparticle Organic Hybrid Materials for Carbon Dioxide Capture

Lin, Kun-Yi January 2012 (has links)
Given the rapid increase in atmospheric concentration of CO2, the development of efficient CO2 capture technologies is critical for the future of carbon-based energy. Currently, the most commonly employed approach to capture CO2 is amine scrubbing in which amine-based solvents react with gaseous CO2 to form carbamate. Although the amine-based solvents such as monoethanolamine (MEA) exhibit high CO2 capture capacity, their high volatility results in corrosive fumes and energy-intensive regeneration process. Therefore, there is an urgent need to develop alternative CO2 capture media that can be efficient and environmentally sustainable. To achieve this goal, a new class of CO2 capture media named Nanoparticle Organic Hybrid Materials (NOHMs) has been formulated. A unit of NOHMs consists of a surface-functionalized nanoparticle as a core to which selected polymers are tethered to form a canopy. Such a configuration prevents loss of polymers and enables NOHMs to exhibit near zero vapor pressure. As the canopy is tethered to the core, it has been theorized that CO2 can be captured not only by the enthalpic effect via reactions with functional groups along the polymeric canopy but also by the entropic means via introduction of small gaseous molecules such as CO2 to reduce the free energy of the frustrated canopy. This study represents the first attempt to investigate CO2 capture using NOHMs. In this dissertation, NOHMs were designed, synthesized and evaluated for CO2 capture properties. Characterization of NOHMs was conducted by employing various spectroscopic tools, such as ATR FT-IR, Raman and NMR, to confirm successful synthesis of NOHMs. Thermal stability and nanoscale configuration of NOHMs were measured using TGA and TEM, respectively. NOHMs with various chemical and structural parameters, including bonding types, functional groups, chain lengths, core sizes, and core fractions, were prepared. The effects of these parameters on CO2 capture relevant properties such as thermal stability, thermally-induced swelling, CO2-induced swelling, CO2 packing behavior and CO2 capture capacity were explored in detail. In comparison to the unbound polymers, NOHMs exhibited enhanced thermal stability. Such an enhancement allows NOHMs to be used in a wide-range of operational temperatures. While an unbound polymer degraded 80 wt% after a 100-cycle temperature swing, there was no significant loss in its corresponding NOHMs. Elevated temperatures also caused NOHMs to swell but the degree of thermally-induced swelling of NOHMs was less than that of the unbound polymers due to restriction on movement of the tethered polymer chains. CO2 capture capacity studies revealed that NOHMs can capture 0.1 - 0.4 mmol/g-solvent depending on partial pressure of CO2 and temperatures. The CO2 capture mechanism was also revealed as a Lewis acid-base interaction between CO2 and ether groups which were the most common functional groups of the polymers selected for the NOHMs synthesis (e.g. NOHM-I-HPE, NOHM-I-tPE and NOHM-I-PEG). The effect of functional groups on CO2 capture was far more significant. When amines were incorporated in NOHMs (e.g. 2.2 mmol/g-solvent in NOHM-I-PEI), as expected, the presence of amines enhanced CO2 capture capacity. While the enthalpic effect was pronounced, the entropic effect from NOHMs' unique structural nature would allow CO2 to be captured more effectively. In order to explore the entropic effect, NOHMs were synthesized to minimize the enthalpic effect for the most of structural studies, such as studies of CO2-induced swelling and interaction of CO2 with the canopy. For the CO2-induced swelling behavior, NOHMs exhibited notably less swelling than the unbound polymers at a given CO2 capture capacity. NOHMs comprised of shorter polymer chains exhibited even less swelling than NOHMs having longer polymer chains at a given CO2 capture capacity. This may be due to conformational differences between NOHMs and the unbound polymers which allow more CO2 molecules to pack within polymer chains. Such conformational differences were further pronounced by lowering the grafting densities in NOHMs. These differences were attributed to specific structural configuration of a NOHMs' canopy in which polymer chains were tethered onto inorganic nanoparticle cores causing more "rigid" arrangements than in a bulk polymer. In order to facilitate the implementation of NOHMs for CO2 capture, several aspects were also investigated, including impact of SO2, viscosity of NOHMs and CO2 diffusivity in NOHMs. It was found that no significant amount of SO2 was captured in NOHMs at low concentration (200 ppm of SO2 in N2), while a considerable amount of SO2 was captured by NOHMs at 3010 ppm of SO2 in N2. As N2 is almost insoluble in NOHMs, NOHMs showed a high selectivity toward SO2 capture over N2 capture. This behavior enables NOHMs to be a potential candidate for SO2 removal. About 10 - 30% of CO2 capture capacity was reduced after NOHMs exposed to SO2 due to unavailability of some capture sites in NOHMs, which were occupied by SO2. The result of the simultaneous removal of CO2 and SO2 showed that at low SO2 concentration, NOHMs did not exhibit a noticeable selectivity toward SO2 over CO2. CO2 capture capacity and CO2-induced swelling were also measured with a mixture of CO2/SO2 to explore the effect of SO2 on CO2-induced swelling and packing behaviors of NOHMs. Similar swelling behaviors were observed under pressurization with CO2/SO2 and pure CO2 at low pressures. However, swelling behaviors of two cases deviated at higher pressures. This may be attributed to the distinct packing patterns in NOHMs under the pressurization with CO2/SO2 compared to the pressurization with pure CO2. The viscosity and CO2 diffusivity in NOHMs with various structural parameters were also measured. The effect of core size was not pronounced on viscosity and CO2 diffusivity as the core fraction was fixed. In contrast, a higher core fraction in NOHMs resulted in a significantly higher viscosity and a lower CO2 diffusivity. The effect of temperature was also notable on CO2 diffusion in NOHMs. However, a higher temperature can have a negative impact on the CO2 capture capacity of NOHMs. To obtain an improved CO2 diffusivity for CO2 capture, the optimal operation temperature ranging from 40 to 70 ºC was determined. Finally, if the viscosity of NOHMs could be appropriately lowered by manipulating core sizes and core fractions at an optimal operation temperature, fluid NOHMs could be used in a spraying tower to capture CO2. For relatively viscous NOHMs, such as amine functionalized NOHMs, a supported liquid membrane system could be used by coating or filling NOHMs inside the membrane to increase contact area for CO2 capture. NOHMs could also be even functionalized to serve as dual-purpose smart materials for CO2 capture and photocatalytic conversion of CO2 to alcohols. A significantly amount of energy could be saved from solvent regeneration and the product would improve the process economics. In summary, NOHMs were designed and synthesized to investigate the effects of chemical and structural parameters on key factors affecting CO2 capture, including thermal stability, thermally-induced swelling, CO2-induced swelling, CO2 packing behavior, selectivity, viscosity and CO2 diffusivity. The fundamental knowledge gained in this study not only became a basis for the optimal design of NOHMs for CO2 capture but also provided important information on how to design nanoscale hybrid materials for other advanced environmental and energy technologies.
48

Nanofluidics: Fundamentals and Applications in Energy Conversion

Liu, Ling January 2010 (has links)
As a nonwetting liquid is forced to invade the cavities of nanoporous materials, the liquid-solid interfacial tension and the internal friction over the ultra-large specific surface area (usually billions of times larger than that of bulk materials) can lead to a nanoporous energy absorption system (or, composite) of unprecedented performance. Meanwhile, while functional liquids, e.g. electrolytes, are confined inside the nanopores, impressive mechanical-to-electrical and thermal-to-electrical effects have been demonstrated, thus making the nanoporous composite a promising candidate for harvesting/scavenging energy from various environmental energy sources, including low grade heat, vibrations, and human motion. Moreover, by taking advantage of the inverse process of the energy absorption/harvesting, thermally/electrically controllable actuators can be designed with simultaneous volume memory characteristics and large mechanical energy output. In light of all these attractive functionalities, the nanoporous composite becomes a very promising building block for developing the next-generation multifunctional (self-powered, protective and adaptive) structures and systems, with wide potential consumer, military, and national security applications. In essence, all the functionalities of the proposed nanofluidic energy conversion system are governed by nanofluidics , namely, the behavior of liquid molecules and ions when confined in ultra-small nanopores. Nanofluidics is an emerging research frontier where solid mechanics and fluid mechanics meet at the nanoscale. The complex interactions between liquid molecules/ions and solid atoms at the nanointerface, as well as the unique structural, thermal and electrical characteristics of fluids confined in nanocavities collectively represent an outstanding challenge in physical science. A thorough understanding of the science of nanofluids, in particular the detailed molecular mechanisms as well as the roles of various material and system parameters, does not only underpin the development and optimization of the aforementioned nanofluidic energy conversion system, but it also have broad impact on a number of other areas including environmental engineering, chemical engineering, bioengineering, and energy engineering, etc. This dissertation carries out a systematic computational study to explore the fundamental nanofluidic infiltration and transport mechanisms, as well as the thermal and electrical characteristics of the solid-liquid interface. New physical models describing the unique nanofluidic phenomena will be established, where critical parameters, such as the surface tension, contact angle, and viscosity, will be reinvestigated at the nanoscale. The effects of various material and system parameters, such as the solid phase, liquid phase, pore size and pore geometry, as well as the external thermal, electrical and mechanical loads, etc., will be systematically investigated and bridged with the nanofluidic energy conversion processes. The energy conversion efficiencies under various conditions will be evaluated via a synergy between simulation and experiment. Reverse analysis based on the revealed principles can guide the optimization of the various material and system parameters, which potentially may contribute to the design of highly efficient and sustainable nanofluidic energy conversion devices. Besides the direct impact on the nanofluidic energy conversion, the study is also directly relevant to biological conduction and environmental sustainability, in both of which infiltration and transport play important roles.
49

Essays on Infrastructure Design and Planning for Clean Energy Systems

Kocaman, Ayse January 2014 (has links)
The International Energy Agency estimates that the number of people who do not have access to electricity is nearly 1.3 billion and a billion more have only unreliable and intermittent supply. Moreover, current supply for electricity generation mostly relies on fossil fuels, which are finite and one of the greatest threats to the environment. Rising population growth rates, depleting fuel sources, environmental issues and economic developments have increased the need for mathematical optimization to provide a formal framework that enables systematic and clear decision-making in energy operations. This thesis through its methodologies and algorithms enable tools for energy generation, transmission and distribution system design and help policy makers make cost assessments in energy infrastructure planning rapidly and accurately. In Chapter 2, we focus on local-level power distribution systems planning for rural electrification using techniques from combinatorial optimization. We describe a heuristic algorithm that provides a quick solution for the partial electrification problem where the distribution network can only connect a pre-specified number of households with low voltage lines. The algorithm demonstrates the effect of household settlement patterns on the electrification cost. We also describe the first heuristic algorithm that selects the locations and service areas of transformers without requiring candidate solutions and simultaneously builds a two-level grid network in a green-field setting. The algorithms are applied to real world rural settings in Africa, where household locations digitized from satellite imagery are prescribed. In Chapter 3 and 4, we focus on power generation and transmission using clean energy sources. Here, we imagine a country in the future where hydro and solar are the dominant sources and fossil fuels are only available in minimal form. We discuss the problem of modeling hydro and solar energy production and allocation, including long-term investments and storage, capturing the stochastic nature of hourly supply and demand data. We mathematically model two hybrid energy generation and allocation systems where time variability of energy sources and demand is balanced using the water stored in the reservoirs. In Chapter 3, we use conventional hydro power stations (incoming stream flows are stored in large dams and water release is deferred until it is needed) and in Chapter 4, we use pumped hydro stations (water is pumped from lower reservoir to upper reservoir during periods of low demand to be released for generation when demand is high). Aim of the models is to determine optimal sizing of infrastructure needed to match demand and supply in a most reliable and cost effective way. An innovative contribution of this work is the establishment of a new perspective to energy modeling by including fine-grained sources of uncertainty such as stream flow and solar radiations in hourly level as well as spatial location of supply and demand and transmission network in national level. In addition, we compare the conventional and the pumped hydro power systems in terms of reliability and cost efficiency and quantitatively show the improvement provided by including pumped hydro storage. The model will be presented with a case study of India and helps to answer whether solar energy in addition to hydro power potential in Himalaya Mountains would be enough to meet growing electricity demand if fossil fuels could be almost completely phased out from electricity generation.
50

Losing power : the struggle for control of South Australia's electricity industry

Spoehr, John Douglas January 2008 (has links)
This thesis examines the role that structure and agency play in the outcomes of political contests around privatisation. It does so through a case study of the South Australian Electricity Trust (ETSA), which was established (nationalised) in 1946 and privatised in 1999. The approach taken involves an examination of historical context, particularly the emergence of public enterprise and the nationalisation of the South Australian electricity industry in the post WW2 period.

Page generated in 0.0448 seconds