• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 13
  • 12
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 133
  • 133
  • 94
  • 56
  • 44
  • 35
  • 27
  • 23
  • 19
  • 18
  • 16
  • 16
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Simultaneous Lightwave Information and Power Transfer (SLIPT)

De Oliveira Filho, José Ilton 07 1900 (has links)
Harvesting energy became one of the most prominent research topics around the world, not only for research institutes and universities but also for technology companies as well. Mainly focused on internet of things (IoT) applications, harvesting energy is a crucial factor for reducing costs that come with the use of batteries and increasing the devices’ working time. Simultaneous lightwave information and power transfer is a technique that seeks to use wireless optical communication to achieve both fundamental objectives in modern communication systems. This work presents the main techniques that are used to achieve SLIPT, a novel circuit that improves the standard methods and applications employing this circuit.
22

Wireless Power Transfer and Power Management Unit Integrated with Low-Power IR-UWB Transmitter for Neuromodulation and Self-Powered Sensor Applications

Biswas, Dipon Kumar 05 1900 (has links)
This dissertation is particularly focused on a novel approach of a wirelessly powered neuromodulation system for chronic patients. The inductively coupled transmitter (TX) and receiver (RX) coils are designed through optimization to achieve maximum efficiency. A power management unit (PMU) consisting of a voltage rectifier, voltage regulator along with a stimulation circuitry is also designed to provide pulse stimulation to genetically modified neurons. For continuous health monitoring purposes, the response from the brain due to stimulation needs to be recorded and transmitted wirelessly outside the brain for analysis. A low-power high-data duty-cycled impulse-radio ultra-wideband (IR-UWB) transmitter is designed and implemented using the standard CMOS process. Another focus of this dissertation is the design of a reverse electrowetting-on-dielectric (REWOD) based energy harvesting circuit for wearable sensor applications which is capable of generating a very low-frequency signal from motion activity such a walking, running, jogging, etc. A commercial off-the-shelf (COTS) based and on-chip based energy harvesting circuit is designed for very low-frequency signals. The experimental results show promising progress towards the advancement in the wirelessly powered neuromodulation system and building the self-powered wearable sensor.
23

Modeling and Design of Antennas for Loosely Coupled Links in Wireless Power Transfer Applications

Sinclair, Melissa Ann 08 1900 (has links)
Wireless power transfer (WPT) systems are important in many areas, such as medical, communication, transportation, and consumer electronics. The underlying WPT system is comprised of a transmitter (TX) and receiver (RX). For biomedical applications, such systems can be implemented on rigid or flexible substrates and can be implanted or wearable. The efficiency of a WPT system is based on power transfer efficiency (PTE). Many WPT system optimization techniques have been explored to achieve the highest PTE possible. These are based on either a figure-of-merit (FOM) approach, quality factor (Q-factor) maximization, or by sweeping values for coil geometries. Four WPT systems for biomedical applications are implemented with inductive coupling. The thesis later presents an optimization technique for finding the maximum PTE of a range of frequencies and coil shapes through frequency, geometry and shape sweeping. Five optimized TX coil designs for different operating frequencies are fabricated for three shapes: square, hexagonal, and octagonal planar-spirals. The corresponding RX is implemented on polyimide tape with ink-jet-print (IJP) silver. At 80 MHz, the maximum measured PTE achieved is 2.781% at a 10 mm distance in the air for square planar-spiral coils.
24

Metamaterial Designs for Applications in Wireless Power Transfer and Computational Imaging

Lipworth, Guy January 2015 (has links)
<p>The advent of resonant metamaterials with strongly dispersive behavior allowed scientists to design new electromagnetic devices -- including (but not limited to) absorbers, antennas, lenses, holograms, and arguably the most well-known of them all, invisibility cloaks -- exhibiting properties that would otherwise be difficult to obtain. At the heart of these breakthrough designs is our ability to model the behavior of individual metamaterial elements as Lorentzian dipoles, and -- in applications that call for it -- collectively model an entire array of such elements as a homogenous medium with effective electromagnetic properties retrieved from measurements or simulations. </p><p>Of particular interest in the context of this dissertation is a certain type of metamaterials elements which -- while composed entirely of essentially non-magnetic materials -- respond to a magnetic field, can be modeled as magnetic dipoles, and are able to form a material with effective magnetic response. This thesis describes how such ``magnetic metamaterials'' have been utilized by the author when designing devices for applications in wireless power transfer (WPT) and computational imaging. For the former, I discuss in the thesis a metamaterial implementation of a magnetic `superlens' for wireless power transfer enhancements, and a magnetic reflector for near field shielding. For the latter I detail how we model the imaging capabilities of a recently-introduced class of dispersive metamaterial-based leaky apertures that produce pseudo-random measurement modes, and demonstration of novel Lorentzian-constrained holograms able to tailor their radiation patterns. </p><p>To design a magnetic superlens for WPT enhancements, we first demonstrate how an array comprising resonant metamaterial elements can act as an effective medium with negative permeability ($\mu$) and enhance near-field transmission of quasi-static non-resonant coil antennas. We implement a new technique to retrieve all diagonal components of our superlens' permeability, including its normal component, which standard techniques cannot retrieve. We study the effect of different components of the $\mu$ tensor on field enhancements using analytical solutions as well as 2D rotationally-symmetric full-wave simulations which approximate the lens as a disc of equal diameter, enabling highly efficient axisymmetric description of the problem. Our studies indicate enhancements are strongest when all three diagonal components of Re$(\mu)$ are negative, which we attribute to the excitation of surface waves.</p><p>The ability to retrieve permeability's normal component, awarded to us with the implementation of the aforementioned retrieval technique, directly enabled the design of a near field magnetic shield, which -- in contrast to the tripple-negative superlens -- relies on the normal component of $\mu$ assuming values near zero. The thesis discusses the theory behind this phenomenon and explains why such an anisotropic slab is capable of reflecting magnetic fields with component of their wave vector parallel to the slab's surface (fields which contain significant portions of the energy transferred in WPT systems with dipole-like coils). Furthermore, the dispersive nature of the resonant metamaterials used to realize the shield grants us the ability to block certain frequencies while allowing the transmission of other, which can be particularly useful in certain applications; conventional materials used for shielding or electromagnetic interference (EMI) suppression, on the other hand, block frequencies indiscriminately. </p><p>The thesis also discusses a single-pixel, metamaterial-based aperture we designed for computational imaging purposes. This aperture, termed \textit{metaimager}, forms pseudo-random radiation patterns that vary with frequency by leaking energy from a guided mode via a collection of randomly distributed resonant metamaterial elements. The metaimager, then, is able to interrogate a scene without any moving parts or expensive auxiliary hardware (both are common problems which plague synthetic aperture and phased array systems, respectively). While such a structure cannot be homogenized, when modeling its imaging capabilities we still rely on the fact each of its irises can be modeled analytically as a magnetic dipole using a relatively simple Lorentzian expression. Accurate qualitative modeling of such apertures is of paramount importance in the design and optimization stages, since it allows us to save time and money by avoiding prohibitively slow full-wave simulations of such complex structures and unnecessary fabrication processes. </p><p>Lastly, the thesis discusses how such an aperture can be viewed as a hologram in which pixels are realized by the metamaterial elements and the reference wave is realized by the fields that excite them. While the current metaimager implementation produces pseudo-random modes, the last section of the thesis discusses how, by accounting for the Lorentzian constraints of each pixel, a novel metamaterial hologram can be designed to yield tailored radiation patterns. An experiment utilizing a Fraunhofer hologram excited in a free-space illumination configuration indicates tailored modes can indeed be formed by carefully choosing the resonance frequency and location of each metamaterial. While this proof-of-concept example is relatively simple, more sophisticated realizations of such holograms can be explored in future works.</p> / Dissertation
25

Wireless power transfer for implantable biomedical devices using adjustable magnetic resonance

Badr, Basem M. 03 May 2016 (has links)
Rodents are essential models for research on fundamental neurological processing and for testing of therapeutic manipulations including drug efficacy studies. Telemetry acquisition from rodents is important in biomedical research and requires a long-term powering method. A wireless power transfer (WPT) scheme is desirable to power the telemetric devices for rodents. This dissertation investigates a WPT system to deliver power from a stationary source (primary coil) to a moving telemetric device (secondary coil) via magnetic resonant coupling. The continuously changing orientation of the rodent leads to coupling loss/problems between the primary and secondary coils, presenting a major challenge. We designed a novel secondary circuit employing ferrite rods placed at specific locations and orientations within the coil. The simulation and experimental results show a significant increase of power transfer using our ferrite arrangement, with improved coupling at most orientations. The use of a medium-ferrite-angled (4MFA) configuration further improved power transfer. Initially, we designed a piezoelectric-based device to harvest the kinetic energy available from the natural movement of the rodent; however, the harvested power was insufficient to power the telemetric devices for the rodents. After designing our 4MFA device, we designed a novel wireless measurement system (WMS) to collect real-time performance data from the secondary circuit while testing WPT systems. This prevents the measurement errors associated with voltage/current probes or coaxial cables placed directly into the primary magnetic field. The maximum total efficiency of our novel WPT is 14.1% when the orientation of the 4MFA is parallel to the primary electromagnetic field, and a current of 2.0 A (peak-to-peak) is applied to the primary coil. We design a novel controllable WPT system to facilitate the use of multiple secondary circuits (telemetric devices) to operate within a single primary coil. Each telemetric device can tune or detune its resonant frequency independently of the others using its internal control algorithm. / Graduate / 2018-04-26
26

Elementos magnéticos fracamente acoplados para aplicação em transferência indutiva de potência: procedimento e critérios de projeto, análise de sensibilidade e condições de bifurcação / Loosely coupled magnetic elements for inductive power transfer: procedure and design criteria, sensitivity analysis and bifurcation conditions

Fernandes, Rodolfo Castanho 04 September 2015 (has links)
Além da transferência de energia elétrica por meio de condutores sólidos que interligam carga e fonte elétrica, existem formas alternativas que, por não necessitarem de conexão mecânica, permitem maior mobilidade espacial para a carga e trazem inúmeras novas possibilidades de aplicação. Dentre estas formas alternativas está a Transferência Indutiva de Potência, que possui desafios claros no que diz respeito ao projeto do sistema magnético formado pelos indutores emissor e receptor, quando entre eles existe acoplamento magnético muito reduzido. A retirada do núcleo magnético sólido entre emissor e receptor confere a possibilidade de o receptor se mover em relação ao emissor, o que permite a transferência de potência a uma carga móvel. Contudo, o baixo coeficiente de acoplamento magnético torna o sistema fracamente acoplado sensível a variações tanto no circuito ressonante que o alimenta quanto na própria geometria magnética, onde pequenas modificações dimensionais resultam em significativos ganhos de potência no receptor. Esta tese apresenta inicialmente um conjunto de rotinas computacionais que agilizam o projeto de sistemas fracamente acoplados contendo emissores e receptores circulares ou espirais. Estas rotinas agem como pré e pós-processadores do Método dos Elementos Finitos, que por sua vez é solucionado por um aplicativo bidimensional gratuito. Com esta abordagem, é possível desenvolver rapidamente acopladores magnéticos com parâmetros realísticos, cuja montagem experimental demonstra excelente conformidade com os resultados teóricos. Um grupo de onze acopladores magnéticos diferentes é avaliado nesta tese como demonstração de que a otimização de parâmetros geométricos é relevante para a maximização de potência no receptor. Compara-se também o desempenho de acopladores Bipolar, Duplo D e Duplo D Quadratura. Após evidenciar relações geométricas e magnéticas para os diversos acopladores, verifica-se por meio de estudos de sensibilidade paramétrica, que não apenas a geometria do sistema fracamente acoplado influencia em seu desempenho, mas também a escolha dos parâmetros das malhas ressonantes conectadas ao emissor e ao receptor. Disto se conclui sobre a importância da Análise de Sensibilidade em Transferência Indutiva de Potência, pois, como demonstrado, certas malhas ressonantes são naturalmente mais tolerantes a variações do coeficiente de acoplamento magnético do que outras, por exemplo, aquelas em que há compensação do tipo paralelo no emissor. Por fim, o trabalho dedica-se ao estabelecimento de critérios para a ocorrência do fenômeno de bifurcação, segundo o qual múltiplas frequências de ressonância podem ocorrem em um conversor em frequência variável, a depender da carga conectada ao receptor e dos fatores de qualidade dos indutores. O equacionamento, obtido numericamente e que foi generalizado para casos em que existem múltiplos receptores, permite boa previsibilidade a respeito do comportamento dinâmico de sistemas variáveis em frequência. / In addition to the transfer of electrical energy by means of solid conductors that interconnect electrical source and load, there are alternative ways that does not require mechanical connection and allow spatial mobility to the load bringing numerous new application possibilities. Among these alternative forms is Inductive Power Transfer, which has clear challenges with respect to the magnetic system design formed by emitter and receiver inductors, since there is very little magnetic coupling between them. The removal of the solid magnetic core between emitter and receiver introduces the possibility of moving receivers. However, the low magnetic coupling coefficient makes the loosely coupled system sensitive to variations in both the resonant circuit parameters and the magnetic geometry, where small dimensional changes result in significant power gains in the receiver. This thesis initially presents a set of computing routines that allows the design of loosely coupled systems containing circular or spiral inductors. These routines act as pre- and post-processors for Finite Element Method, which in turn is solved by a free two-dimensional application. With this approach one can quickly develop magnetic couplers with realistic parameters, which is demonstrated by comparison between experimental and theoretical results. A group of eleven different magnetic couplers is evaluated as a proof that the optimization of geometric parameters is relevant to maximizing the power of the receiver. Moreover, the performance of Bipolar, Double D and Double D Quadrature couplers are studied. Later, it is verified by means of parametric sensitivity analysis that not only the geometry of the loosely coupled system influences its performance, but also the choice of the parameters of the resonant converters connected to emitter and receiver. The sensitivity analysis of Inductive Power Transfer converters was found to be of great importance because, as shown by a numerical example, certain resonant topologies can be naturally more tolerant to variations in the magnetic coupling coefficient than others. Finally, the work is dedicated to the establishment of precise criteria for the occurrence of bifurcation phenomenon whereby multiple resonant frequencies can occur in a converter under variable frequency excitation, depending on the load connected to the receiver and the quality factors of inductors. The equations obtained numerically were generalized for cases where there are multiple receivers and allow good predictability about the dynamic behavior of variable frequency systems.
27

Channel Estimation Error, Oscillator Stability And Wireless Power Transfer In Wireless Communication With Distributed Reception Networks

Razavi, Sabah 11 January 2019 (has links)
This dissertation considers three related problems in distributed transmission and reception networks. Generally speaking, these types of networks have a transmit cluster with one or more transmit nodes and a receive cluster with one or more receive nodes. Nodes within a given cluster can communicate with each other using a wired or wireless local area network (LAN/WLAN). The overarching goal in this setting is typically to increase the efficiency of communication between the transmit and receive clusters through techniques such as distributed transmit beamforming, distributed reception, or other distributed versions of multi-input multi-output (MIMO) communication. More recently, the problem of wireless power transfer has also been considered in this setting. The first problem considered by this dissertation relates to distributed reception in a setting with a single transmit node and multiple receive nodes. Since exchanging lightly quantized versions of in-phase and quadrature samples results in high throughput requirements on the receive LAN/WLAN, previous work has considered an approach where nodes exchange hard decisions, along with channel magnitudes, to facilitate combining similar to an ideal receive beamformer. It has been shown that this approach leads to a small loss in SNR performance, with large reductions in required LAN/WLAN throughput. A shortcoming of this work, however, is that all of the prior work has assumed that each receive node has a perfect estimation of its channel to the transmitter. To address this shortcoming, the first part of this dissertation investigates the effect of channel estimation error on the SNR performance of distributed reception. Analytical expressions for these effects are obtained for two different modulation schemes, M-PSK and M2-QAM. The analysis shows the somewhat surprising result that channel estimation error causes the same amount of performance degradation in ideal beamforming and pseudo-beamforming systems despite the fact that the channel estimation errors manifests themselves quite differently in both systems. The second problem considered in this dissertation is related to oscillator stability and phase noise modeling. In distributed transmission systems with multiple transmitters in the transmit cluster, synchronization requirements are typically very strict, e.g., on the order of one picosecond, to maintain radio frequency phase alignment across transmitters. Therefore, being able to accurately model the behavior of the oscillators and their phase noise responses is of high importance. Previous approaches have typically relied on a two-state model, but this model is often not sufficiently rich to model low-cost oscillators. This dissertation develops a new three-state oscillator model and a method for estimating the parameters of this model from experimental data. Experimental results show that the proposed model provides up to 3 dB improvement in mean squared error (MSE) performance with respect to a two-state model. The last part of this work is dedicated to the problem of wireless power transfer in a setting with multiple nodes in the transmit cluster and multiple nodes in the receive cluster. The problem is to align the phases of the transmitters to achieve a certain power distribution across the nodes in the receive cluster. To find optimum transmit phases, we consider a iterative approach, similar to the prior work on one-bit feedback for distributed beamforming, in which each receive node sends a one-bit feedback to the transmit cluster indicating if the received power in that time slot for that node is increased. The transmitters then update their phases based on the feedback. What makes this problem particularly interesting is that, unlike the prior work on one-bit feedback for distributed beamforming, this is a multi-objective optimization problem where not every receive node can receive maximum power from the transmit array. Three different phase update decision rules, each based on the one-bit feedback signals, are analyzed. The effect of array sparsity is also investigated in this setting.
28

Elementos magnéticos fracamente acoplados para aplicação em transferência indutiva de potência: procedimento e critérios de projeto, análise de sensibilidade e condições de bifurcação / Loosely coupled magnetic elements for inductive power transfer: procedure and design criteria, sensitivity analysis and bifurcation conditions

Rodolfo Castanho Fernandes 04 September 2015 (has links)
Além da transferência de energia elétrica por meio de condutores sólidos que interligam carga e fonte elétrica, existem formas alternativas que, por não necessitarem de conexão mecânica, permitem maior mobilidade espacial para a carga e trazem inúmeras novas possibilidades de aplicação. Dentre estas formas alternativas está a Transferência Indutiva de Potência, que possui desafios claros no que diz respeito ao projeto do sistema magnético formado pelos indutores emissor e receptor, quando entre eles existe acoplamento magnético muito reduzido. A retirada do núcleo magnético sólido entre emissor e receptor confere a possibilidade de o receptor se mover em relação ao emissor, o que permite a transferência de potência a uma carga móvel. Contudo, o baixo coeficiente de acoplamento magnético torna o sistema fracamente acoplado sensível a variações tanto no circuito ressonante que o alimenta quanto na própria geometria magnética, onde pequenas modificações dimensionais resultam em significativos ganhos de potência no receptor. Esta tese apresenta inicialmente um conjunto de rotinas computacionais que agilizam o projeto de sistemas fracamente acoplados contendo emissores e receptores circulares ou espirais. Estas rotinas agem como pré e pós-processadores do Método dos Elementos Finitos, que por sua vez é solucionado por um aplicativo bidimensional gratuito. Com esta abordagem, é possível desenvolver rapidamente acopladores magnéticos com parâmetros realísticos, cuja montagem experimental demonstra excelente conformidade com os resultados teóricos. Um grupo de onze acopladores magnéticos diferentes é avaliado nesta tese como demonstração de que a otimização de parâmetros geométricos é relevante para a maximização de potência no receptor. Compara-se também o desempenho de acopladores Bipolar, Duplo D e Duplo D Quadratura. Após evidenciar relações geométricas e magnéticas para os diversos acopladores, verifica-se por meio de estudos de sensibilidade paramétrica, que não apenas a geometria do sistema fracamente acoplado influencia em seu desempenho, mas também a escolha dos parâmetros das malhas ressonantes conectadas ao emissor e ao receptor. Disto se conclui sobre a importância da Análise de Sensibilidade em Transferência Indutiva de Potência, pois, como demonstrado, certas malhas ressonantes são naturalmente mais tolerantes a variações do coeficiente de acoplamento magnético do que outras, por exemplo, aquelas em que há compensação do tipo paralelo no emissor. Por fim, o trabalho dedica-se ao estabelecimento de critérios para a ocorrência do fenômeno de bifurcação, segundo o qual múltiplas frequências de ressonância podem ocorrem em um conversor em frequência variável, a depender da carga conectada ao receptor e dos fatores de qualidade dos indutores. O equacionamento, obtido numericamente e que foi generalizado para casos em que existem múltiplos receptores, permite boa previsibilidade a respeito do comportamento dinâmico de sistemas variáveis em frequência. / In addition to the transfer of electrical energy by means of solid conductors that interconnect electrical source and load, there are alternative ways that does not require mechanical connection and allow spatial mobility to the load bringing numerous new application possibilities. Among these alternative forms is Inductive Power Transfer, which has clear challenges with respect to the magnetic system design formed by emitter and receiver inductors, since there is very little magnetic coupling between them. The removal of the solid magnetic core between emitter and receiver introduces the possibility of moving receivers. However, the low magnetic coupling coefficient makes the loosely coupled system sensitive to variations in both the resonant circuit parameters and the magnetic geometry, where small dimensional changes result in significant power gains in the receiver. This thesis initially presents a set of computing routines that allows the design of loosely coupled systems containing circular or spiral inductors. These routines act as pre- and post-processors for Finite Element Method, which in turn is solved by a free two-dimensional application. With this approach one can quickly develop magnetic couplers with realistic parameters, which is demonstrated by comparison between experimental and theoretical results. A group of eleven different magnetic couplers is evaluated as a proof that the optimization of geometric parameters is relevant to maximizing the power of the receiver. Moreover, the performance of Bipolar, Double D and Double D Quadrature couplers are studied. Later, it is verified by means of parametric sensitivity analysis that not only the geometry of the loosely coupled system influences its performance, but also the choice of the parameters of the resonant converters connected to emitter and receiver. The sensitivity analysis of Inductive Power Transfer converters was found to be of great importance because, as shown by a numerical example, certain resonant topologies can be naturally more tolerant to variations in the magnetic coupling coefficient than others. Finally, the work is dedicated to the establishment of precise criteria for the occurrence of bifurcation phenomenon whereby multiple resonant frequencies can occur in a converter under variable frequency excitation, depending on the load connected to the receiver and the quality factors of inductors. The equations obtained numerically were generalized for cases where there are multiple receivers and allow good predictability about the dynamic behavior of variable frequency systems.
29

Estudo de sistemas de transferência indutiva de potência para recarga de baterias / Study of power inductive transfer systems for battery recharge

Barbosa, Celton Ribeiro 15 May 2018 (has links)
A Transferência Indutiva de Potência (TIP) é uma maneira de se realizar transferência de energia elétrica sem fio e tem se popularizado atualmente por conta da comodidade e segurança que ela proporciona. Esta dissertação apresenta o estudo de um sistema TIP para recarga de baterias e existem vários desafios que devem ser superados nesta área. Um deles é a metodologia de projeto dos indutores primário e secundário, pois não é uma tarefa trivial encontrar uma relação entre parâmetros geométricos, elétricos e magnéticos. Diante deste fato este trabalho apresenta e aperfeiçoa uma metodologia de projeto utilizando uma ferramenta computacional gratuita baseada no método dos elementos finitos. Os resultados experimentais demonstram que o método é válido e a ferramenta é adequada não somente para o projeto dos indutores, mas também para análise do comportamento dos mesmos diante de desalinhamentos espaciais. Além disso, é apresentado o funcionamento básico de dois conversores muito utilizados em TIP e o estado da arte das malhas ressonantes, cuja função é minimizar a energia reativa consumida nos circuitos primário e secundário. Em seguida são discutidas técnicas de estimação de tensão e corrente na carga utilizando medidas de tensão e/ou corrente em elementos do circuito primário. Essas técnicas são importantes, pois permitem a utilização apenas do controlador presente no circuito primário e isto implica na redução dos custo e complexidade do sistema TIP. Durante o estudo verificou-se na literatura que não existia uma técnica de estimação para o sistema TIP adotado neste trabalho e portanto, foi necessário desenvolver uma nova proposta de estimador. Os resultados de simulação demonstram que o estimador possui um bom desempenho mesmo diante de variações do coeficiente de acoplamento e da resistência na carga e é portanto adequado para situações em que é necessário realizar recarga de baterias com TIP. / Inductive Power Transfer (IPT) is a way to conduct wireless power transfer and has become popular today because of the convenience and security it provides. This dissertation presents the study of a IPT system for battery recharging and there are several challenges that must be overcome in this area. One of them is the design methodology of the primary and secondary inductors, since it is not a trivial task to find a relation between geometric, electric and magnetic parameters. In view of this fact, this work presents and improves a project methodology using a free computational based on the finite element method. The experimental results demonstrate that the method is valid and the tool is suitable not only for the design of the inductors, but also for the analysis of their behavior in face of spatial misalignments. In addition, this dissertation presents the basic operation of two widely used IPT converters and the state of the art of compensations networks, whose function is to minimize the reactive energy consumed in the primary and secondary circuits. Next, load voltage and load current estimation techniques are discussed using voltage and/or current measurements on elements of the primary circuit. These techniques are important because they allow the use of a single controller in the primary circuit, reducing the cost and complexity of the IPT system. During the study, it was verified in the literature the inexistence of a estimation technique for the IPT system adopted in this work and therefore, it was necessary to propose and develop a new estimator. The simulation results show that the proposed estimator performs well even in the case of variations in the coupling coefficient and load resistance and is therefore suitable for situations where it is necessary to recharge IPT batteries.
30

NUMERICAL AND EXPERIMENTAL TECHNIQUES FOR ASSESSING THE ACOUSTIC PERFORMANCE OF DUCT SYSTEMS ABOVE THE PLANE WAVE CUTOFF FREQUENCY

Ruan, Kangping 01 January 2018 (has links)
This research deals with determining the acoustic attenuation of heating, ventilation, and air conditioning (HVAC) ductwork. A finite element approach was developed for calculating insertion loss and breakout transmission loss. Procedures for simulating the source and receiving rooms were developed and the effect of structureborne flanking was included. Simulation results have been compared with measurements from the literature and the agreement is very good. With a good model in place, the work was extended in three ways. 1) Since measurements on full-scale equipment are difficult, scale modeling rules were developed and validated. 2) Two different numerical approaches were developed for evaluating the transmission loss of silencers taking into account the effect of higher order modes. 3) A power transfer matrix approach was developed to assess the acoustic performance of several duct components connected in series.

Page generated in 0.0584 seconds