• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 13
  • 12
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 133
  • 133
  • 94
  • 56
  • 44
  • 35
  • 27
  • 23
  • 19
  • 18
  • 16
  • 16
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Implanted Antennas and Intra-Body Propagation Channel for Wireless Body Area Network

Ibraheem, Ali Ahmed Younis 25 November 2014 (has links)
Implanted Devices are important components of the Wireless Body Area Network (WBAN) as a promising technology in biotelemetry, e-health care and hyperthermia applications. The design of WBAN faces many challenges, such as frequency band selection, channel modeling, antenna design, physical layer (PHY) protocol design, medium access control (MAC) protocol design and power source. This research focuses on the design of implanted antennas, channel modeling between implanted devices and Wireless Power Transfer (WPT) for implanted devices. An implanted antenna needs to be small while it maintains Specific Absorption Rate (SAR) and is able to cope with the detuning effect due to the electrical properties of human body tissues. Most of the proposed antennas for implanted applications are electric field antennas, which have a high near-zone electric field and, therefore, a high SAR and are sensitive to the detuning effect. This work is devoted to designing a miniaturized magnetic field antenna to overcome the above limitations. The proposed Electrically Coupled Loop Antenna (ECLA) has a low electric field in the near-zone and, therefore, has a small SAR and is less sensitive to the detuning effect. The performance of ECLA, channel model between implanted devices using Path Loss (PL) and WPT for implanted devices are studied inside different human body models using simulation software and validated using experimental work. The study is done at different frequency bands: Medical Implanted Communication Services (MICS) band, Industrial Scientific and Medical (ISM) band and 3.5 GHz band using ECLA. It was found that the proposed ECLA has a better performance compared to the previous designs of implanted antennas. Based on our study, the MICS band has the best propagation channel inside the human body model among the allowed frequency bands. The maximum PL inside the human body between an implanted antenna and a base station on the surface is about 90 dB. WPT for implanted devices has been investigated as well, and it has been shown that for a device located at 2 cm inside the human body with an antenna radius of 1 cm an efficiency of 63% can be achieved using the proposed ECLA. / Ph. D.
62

Loosely Coupled Transformer and Tuning Network Design for High-Efficiency Inductive Power Transfer Systems

Zheng, Cong 02 June 2015 (has links)
Transfer signal without wire has been widely accepted after the introduction of cellular technology and WiFi technology, hence the power cable is the last wire that has yet to be eliminated. Inductive power transfer (IPT) has drawn substantial interest in both academia and industry due to its advantages including convenience, nonexistence of cable and connector, no electric shock issue, ability to work under some extreme environment, and so on. After performing thorough literature review of IPT systems, two major drawbacks including low power efficiency and coil displacement sensitivity are identified as the main obstacles that have to be solved in order for these systems to reach full functionality and compete with existing wired solutions. To address the limitations and design challenges in the IPT systems, a detailed electric circuit modeling of individual part of the IPT DC-DC stage is performed. Several resonant DC-AC inverters and output AC-DC rectifiers are compared based on their performance and feasibility in inductive charging applications. Different equivalent circuit models for the loosely coupled transformer (LCT) are derived which allows for better understanding on how power is distributed among the circuit components. Five compensation networks to improve the power transfer efficiency are evaluated and their suitable application occasions are identified. With comprehensive circuit model analysis, the influence of the resonant compensation tank parameters has been investigated carefully for efficient power transfer. A novel tuning network parameters design methodology is proposed based on multiple given requirement such as battery charging profile, geometry constraints and operating frequency range, with the aim of avoiding bifurcation phenomenon during the whole charging process and achieving decent efficiency. A 4-kW hardware prototype based on the proposed design approach is built and tested under different gap and load conditions. Peak IPT system DC-DC efficiencies of 98% and 96.6% are achieved with 4-cm and 8-cm air gap conditions, which is comparable to the conventional plug-in type or wired charging systems for EVs. A long-hour test with real EV batteries is conducted to verify the wireless signal transmission and CC/CV mode seamless transition during the whole charging profile without bifurcation. To reduce the IPT system sensitivity to the gap variation or misalignment, a novel LCT design approach without additional complexity for the system is proposed. With the aid of FEA simulation software, the influence of coil relative position and geometry parameters on the flux distribution and coupling coefficient of the transmitter and receiver is studied from an electromagnetic perspective. An asymmetrical LCT based on the proposed design method is built to compare with a traditional symmetrical LCT. With fixed 10-mm gap and 0 to 40-mm misalignment variation, the coupling coefficient for the symmetrical LCT drops from 0.354 to 0.107, and the corresponding efficiency decrease is 16.6%. The operating frequency variation is nearly 100 kHz to maintain same input/output condition. When employing the proposed asymmetrical LCT, the coupling coefficient changes between 0.312 and 0.273, and the maximum efficiency deviation is kept within 0.67% over the entire 40-mm misalignment range. Moreover, the required frequency range to achieve same operation condition is less than 10 kHz. Lastly, some design considerations to further improve the IPT system efficiency are proposed on the basis of the designed asymmetrical LCT geometry. For given circuit specifications and LCT coupling conditions, determination of the optimal primary winding turns number could help achieve minimal winding loss and core loss. For lower output power, the optimal primary winding turns number tends to be larger compared to that for higher output power IPT system. Two asymmetrical LCT with similar dimension but different number of turns are built and tested with a 100-W hardware prototype for laptop inductive charging. The proposed efficiency improvement methodology is validated by the winding loss and core loss from experimental results. / Ph. D.
63

Design of a Wireless Power Transfer System using Electrically Coupled Loop Antennas

Chandrasekhar Nambiar, Shyam 01 July 2015 (has links)
Wireless Power Transfer (WPT) has become quite popular over the recent years. This thesis presents some design challenges while developing a WPT system and describes a system-level methodology for designing an end-to-end system. A critical analysis of contemporary research is performed in the form of a literature survey of both academic and commercial research to understand their benefits and demerits. Some theoretical notes are presented on coupled-mode theory and coupled filter theory and the problems concerning WPT analyzed using these models. The need for higher power transfer efficiency (PTE) and power delivered to load (PDL) is studied using these models. The case for using magnetic antennas over electric antennas when surrounded by lossy media (specifically for the case of human body tissues at various frequencies) is made using some theoretical models and simulation results. An Electrically Coupled Loop Antenna (ECLA) is introduced, studied and designed for two main WPT applications, viz. free space transmission and that of powering implanted devices. An equivalent circuit is proposed to better understand the coupling effects of the antennas on a circuit level and to study the effect of various environmental and structural factors on the coupling coefficient. Some prototypes were created and measured for the two use cases of free space and implanted applications. In order to complete the system design, a negative resistance-based oscillator is designed and fabricated, that incorporates the antennas as a load and oscillates at the required frequency. Some changes in load conditions and power handling are studied by the use of two circuits for free-space (high-power) and implanted (low-power) applications. Finally, the salient points of the thesis are re-iterated and some future work outlined in the concluding chapter. / Master of Science
64

CMOS inductively coupled power receiver for wireless microsensors

Lazaro, Orlando 22 May 2014 (has links)
This research investigates how to draw energy from a distant emanating and alternating (i.e., AC) magnetic source and deliver it to a battery (i.e., DC). The objective is to develop, design, simulate, build, test, and evaluate a CMOS charger integrated circuit (IC) that wirelessly charges the battery of a microsystem. A fundamental challenge here is that a tiny receiver coil only produces mV's of AC voltage, which is difficult to convert into DC form. Although LC-boosted diode-bridge rectifiers in the literature today extract energy from similar AC sources, they can do so only when AC voltages are higher than what miniaturized coils can produce, unless tuned off-chip capacitors are available, which counters the aim of integration. Therefore, rather than rectify the AC voltage, this research proposes to rectify the current that the AC voltage induces in the coil. This way, the system can still draw power from voltages that fall below the inherent threshold limit of diode-bridge rectifiers. Still, output power is low because, with these low currents, small coils can only extract a diminutive fraction of the magnetic energy available, which is why investing battery energy is also part of this research. Ultimately, the significance of increasing the power that miniaturized platforms can output is higher integration and functionality of micro-devices, like wireless microsensors and biomedical implants.
65

Wireless Power Transfer : Machine Learning Assisted Characteristics Prediction for Effective Wireless Power Transfer Systems / Trådlös kraftöverföring : Maskininlärning Assisterade egenskaper Förståelse för effektiva trådlösa kraftöverföringssystem

Al Mahmud, Shamsul Arefeen January 2020 (has links)
One of the main challenges in wireless power transfer (WPT) devices is performance degradation when the receiver’s position and characteristics vary. The variations in the system parameters such as load impedance and coupling strength in WPT devices affect performance characteristics such as output voltage and power. When the system parameters are different from the optimal operating conditions, the performances are degraded. Therefore, the load impedance and coupling strength must be monitored to do the necessary optimization and control. However, such control approaches require additional sensing circuits and a data communication link between transmitter- and receiver-sides. This study proposes a new machine learning (ML) assisted WPT system that predicts the power delivered to the receiver by only using measurements at the transmitter-side. In addition, a method is also proposed to estimate load impedance and coupling coefficient using machine learning approach. We study what parameters measurable at the transmitter-side can be used to predict the output power delivered to receivers at variable load impedance and coupling strengths. In the proposed method, the output power of an inductor-capacitor-capacitor (LCC)-Series tuned WPT system is successfully predicted only using the measured root-mean-square (RMS) of the input current. Random forest algorithm has shown best accuracy to estimate the output power based on transmitter-side parameters only. The proposed approach is experimentally validated using a laboratory prototype. Harmonic components of the input current are used to assess the load impedance and coupling coefficient successfully. Multi-output regression has the highest accuracy for estimating the load impedance and coupling coefficient. The proposed ML algorithm is also used to classify the turn-on and -off regimes to ensure high-efficient operation. / En av de viktigaste utmaningarna med trådlösa kraftöverföring enheter är degraderingen av prestandan när mottagarens position och egenskaper varierar. Variationerna av systemets parametrar, såsom belastningsmotstånd och kopplings styrka i WPT-anordning, påverkar prestanda egenskaperna såsom spänning och effekt. När system parametrarna skiljer sig från de optimala drifts förhållandena, försämras prestandan. Därför måste luftmotståndet och kopplings styrkan övervakas, för att göra nödvändig optimering och kontroll. Sådana styrmetoder kräver emellertid ytterligare avkännings kretsar, och en data kommunikationslänk mellan sändar- och mottagarsidan. Denna studie föreslår ett nytt maskininlärning assisterat WPT-system, som förutsäger kraften som levereras till mottagaren genom att endast använda mätningar på sändarsidan. Dessutom föreslås en metod för att detektera belastningsimpedans och kopplings koefficient med användning av maskin inlärningsmetoder. Vi studerar vilka parametrar som är mätbara på sändarsidan och som kan användas för att förutsäga utgången effekten som levereras till mottagare vid varierande belastningsmotstånd och kopplings nivåer. I den föreslagna metoden förutses framgångs effekten för ett induktor-kondensator-kondensator LCCserie avstämt WPT-system endast framgångsrikt med hjälp av det uppmätta effektivvärdet för ingångs strömmen. Slumpmässig skogsalgoritm har visat exceptionell noggrannhet för att uppskatta uteffekten endast baserat på sändarsidans parametrar. Den föreslagna metoden valideras experimentellt med användning av en laboratorium prototyp. Harmoniska komponenter i ingångs strömmen används för att framgångsrikt bedöma last motståndet och kopplings koefficienten. Multi-utgångsregression har verkat vara mycket exakt för att uppskatta belastningsimpedans och kopplingskoefficient. Den föreslagna maskininlärning algoritmen används också för att klassificera start-och-off-regimer för att säkerställa hög effektiv drift.
66

Optimisation des transferts d'énergie pour les systèmes connectés : application aux systèmes RFID communiquant en champ proche à très haut débit / Power transfer optimization for internet of things : application to near field RFID systems communicating at very high data rate

Couraud, Benoît 11 December 2017 (has links)
Dans le contexte de développement de produits sans-contact communiquant à très haut débit, dît systèmes VHBR (Very High Bit Rate), il s’avère que les cartes ou passeports VHBR, télé-alimentés à partir du lecteur qui communique avec eux, sont contraints de fonctionner avec une alimentation bien plus faible que les produits communiquant à des débits standards. Pour répondre à cette problématique de manque de puissance d’alimentation, il a été nécessaire de commencer par reprendre la théorie des lignes en l'orientant de manière à ce qu'elle permette de quantifier les transferts de puissance entre une source et une charge séparées par un média quelconque. Ensuite, ce nouveau moyen de quantification des transferts de puissance a été utilisé pour faire de l'aide à la conception des lecteurs VHBR. Ensuite, ce travail de recherche se concentre sur les cartes ou passeports VHBR. En effet, pour permettre à un tel système sans contact de fonctionner de manière télé-alimentée dans un environnement où la puissance disponible est réduite, il faut optimiser sa conception. Les solutions proposées ici consistent à déterminer la géométrie des antennes inductives qui optimisent la récupération d'énergie et le transfert de puissance vers la puce d'une carte VHBR. Ainsi, les travaux présentés dans ce manuscrit apportent des solutions globales à cette problématique de récupération d'énergie dans les objets connectés que sont les systèmes sans contact, en décrivant des méthodes de conception qui permettent d'une part de limiter les pertes de puissance au sein des lecteurs VHBR, et d'autre part d'optimiser la récupération d'énergie au sein des cartes VHBR. / The research work presented in this thesis provides solutions to help industrials to better design RFID readers and RFID tags that implement VHBR (Very High Bit Rate) protocols. Indeed, VHBR technology has a large drawback on the functionning of RFID tags as it lowers the energy available to supply the tag. First, this research work focuses on RFID reader design, and especially matching networks design. After describing a new way of assessing power transfer in Radio Frequency systems, it is shown that T matching networks as thoses proposed in ISO/IEC 10373-6 give the best results in terms of power transfer and signal integrity. Thus, a design method is proposed to correctly choose the three T matching network components that will optimize the power transfer and still meet the signal integrity requirements.Second, this thesis will focus on the design of RFID tags, by describing a new tag's antenna design method that optimize the energy harvested by the antenna and meanwhile reduce the power reflections between the antenna and the tag's chip. This design method is based on new explicit formula that compute a rectangular planar antenna inductance as a function of its geometric characteristics. This method showed very accurate results, and can become an interesting tool for industrials to speed up and optimize their antenna design procedure.Finally, a platform that measures RFID chip's impedance in every state of the chip has been designed, even during load modulation communication. The accuracy of this tool and its importance in order to achieve a good antenna design confer it a great usefulness.
67

Silicon nanowire field-effect transistors for the detection of proteins

Mädler, Carsten 05 November 2016 (has links)
In this dissertation I present results on our efforts to increase the sensitivity and selectivity of silicon nanowire ion-sensitive field-effect transistors for the detection of biomarkers, as well as a novel method for wireless power transfer based on metamaterial rectennas for their potential use as implantable sensors. The sensing scheme is based on changes in the conductance of the semiconducting nanowires upon binding of charged entities to the surface, which induces a field-effect. Monitoring the differential conductance thus provides information of the selective binding of biological molecules of interest to previously covalently linked counterparts on the nanowire surface. In order to improve on the performance of the nanowire sensing, we devised and fabricated a nanowire Wheatstone bridge, which allows canceling out of signal drift due to thermal fluctuations and dynamics of fluid flow. We showed that balancing the bridge significantly improves the signal-to-noise ratio. Further, we demonstrated the sensing of novel melanoma biomarker TROY at clinically relevant concentrations and distinguished it from nonspecific binding by comparing the reaction kinetics. For increased sensitivity, an amplification method was employed using an enzyme which catalyzes a signal-generating reaction by changing the redox potential of a redox pair. In addition, we investigated the electric double layer, which forms around charges in an electrolytic solution. It causes electrostatic screening of the proteins of interest, which puts a fundamental limitation on the biomarker detection in solutions with high salt concentrations, such as blood. We solved the coupled Nernst-Planck and Poisson equations for the electrolyte under influence of an oscillating electric field and discovered oscillations of the counterion concentration at a characteristic frequency. In addition to exploring different methods for improved sensing capabilities, we studied an innovative method to supply power to implantable biosensors wirelessly, eliminating the need for batteries. A metamaterial split ring resonator is integrated with a rectifying circuit for efficient conversion of microwave radiation to direct electrical power. We studied the near-field behavior of this rectenna with respect to distance, polarization, power, and frequency. Using a 100 mW microwave power source, we demonstrated operating a simple silicon nanowire pH sensor with light indicator.
68

Estudo de compensação de desalinhamentos de bobinas em um sistema de transmissão de energia sem fios

Murliky, Lucas January 2017 (has links)
A transferência de energia sem fio (WPT) rege um importante papel no carregamento de aparelhos remotos. Em um acoplamento indutivo ressonante há várias topologias de sistemas WPT que podem ser implementados para realizar a transferência de energia. Neste trabalho é utilizado uma topologia que utiliza quatro capacitores de compensação para realizar o ajuste da potência entregue a carga, onde estes capacitores são calculados através das fixações dos demais parâmetros do circuito elétrico. Quando o sistema WPT é projetado, uma distância fixa entre as bobinas é almejada, todavia há incertezas e movimentos que podem provocar a alteração desta distância. Há várias técnicas na literatura que buscam realizar a sintonia do acoplamento indutivo para compensar estes desalinhamentos gerado entre as bobinas. Este trabalho apresenta um método multivariável para maximização da potência entregue a carga em um sistema de transferência sem fio. O método proposto utiliza os conceitos de um capacitor variável e a variação de frequência a fim de variar a potência entregue a carga. Os resultados experimentais obtidos para os fatores de acoplamento magnético k > 0;3 mostraram que controlando a frequência e uma capacitância da rede de compensação o desempenho do sistema é melhor que os casos onde apenas uma dessas variáveis é controlada. / Wireless power transfer (WPT) plays an important rule in charging remote devices. In a resonant inductive coupling there are several topologies of WPT systems that can be implemented to perform the energy transfer. In this work, a topology is used that uses four capacitors of compensation to realize the adjustment of the power delivered to load, where these capacitors are calculated through the xations of the other parameters of the electric circuit. When the WPT system is designed, a xed distance between coils is desired, however there are uncertainties and movements that may cause this distance to change. There are several techniques in the literature that seek to realize the tuning of the inductive coupling to compensate for these misalignments generated between the coils. This work presents a multivariable method to maximize the power delivered to the load in a wireless transfer system. The proposed method uses the concepts of a variable capacitor and the frequency variation in order to vary the power delivered to the load. The experimental results obtained for the magnetic coupling factors k > 0:3 showed that controlling the frequency and capacitance of the compensation network system performance is better than the cases where only one of these variables is controlled.
69

Incorporating Wireless Power Transfer in an LED Lighting Application

Shipley, Jonathan S. 15 July 2006 (has links)
There are various situations in which electrical energy is desired but cannot by conveniently supplied. Since the days of Hienrich Hertz and Nikola Tesla, scientists have tried to solve this problem using different methods of wireless power transfer. Today, wireless power transfer has only been commercially demonstrated at small distances through use of induction. This thesis demonstrated the transfer of wireless power at relatively large distances through radio frequencies in the development of a prototype for a commercial product - a wireless household lamp.
70

Novel Strongly Coupled Magnetic Resonant Systems

Liu, Daerhan 21 March 2018 (has links)
Wireless power transfer (WPT) technologies have become important for our everyday life. The most commonly used near-field WPT method is inductive coupling, which suffers from low efficiency and small range. The Strongly Coupled Magnetic Resonance (SCMR) method was developed recently, and it can be used to wirelessly transfer power with higher efficiency over a longer distance than the inductive coupling method. This dissertation develops new SCMR systems that have better performance compared to standard SCMR systems. Specifically, two new 3-D SCMR systems are designed to improve the angular misalignment sensitivity of WPT systems. Their power transfer efficiency for different angular misalignment positions are studied and analyzed. Prototypes are built for both systems and their performance is validated through measurement. Furthermore, new planar broadband conformal SCMR (CSCMR) systems are developed that maintain high efficiency while providing significantly larger bandwidth than standard CSCMR systems. Such broadband CSCMR systems are used here for the first time to simultaneously accomplish highly efficient wireless power transfer and high data rate communication through the same wireless link. These systems that combine wireless power and communication are expected to enable next-generation applications with battery-less and “power-hungry” sensors. Example applications include implantable and wearable sensors as well as embedded sensors for structural health monitoring.

Page generated in 0.067 seconds