• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 13
  • 12
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 133
  • 133
  • 94
  • 56
  • 44
  • 35
  • 27
  • 23
  • 19
  • 18
  • 16
  • 16
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Textile Integrated Induction : Investigation of Textile Inductors for Wireless Power Transfer

Yring, Malin January 2016 (has links)
This research has its basis in developments within the field of inductive powering and wireless power transfer, WPT, and more specifically one the branch within this field, which is called magnetic resonance coupling. This principle enables efficient power transfer from a transmitting unit to a receiving unit at a distance of some times the unit diameter. The developments within magnetic resonant coupling are together with the possibilities and challenges of today’s smart textile industry the starting point to investigate a novel textile-based product concept for WPT by combining both technologies. Multiple textile samples, consisting of cotton and electrically conductive copper yarns, were produced by weaving technique, additional assembling of electronic components were performed manually and several measurements were carried out to investigate the sample characteristics and the sample performance in terms of power transfer. The produced samples showed to behave similarly to conventional inductors and were able to transfer power over some distance.
92

Distributed Cooperative Communications and Wireless Power Transfer

Wang, Rui 22 February 2018 (has links)
In telecommunications, distributed cooperative communications refer to techniques which allow different users in a wireless network to share or combine their information in order to increase diversity gain or power gain. Unlike conventional point-to-point communications maximizing the performance of the individual link, distributed cooperative communications enable multiple users to collaborate with each other to achieve an overall improvement in performance, e.g., improved range and data rates. The first part of this dissertation focuses the problem of jointly decoding binary messages from a single distant transmitter to a cooperative receive cluster. The outage probability of distributed reception with binary hard decision exchanges is compared with the outage probability of ideal receive beamforming with unquantized observation exchanges. Low- dimensional analysis and numerical results show, via two simple but surprisingly good approximations, that the outage probability performance of distributed reception with hard decision exchanges is well-predicted by the SNR of ideal receive beamforming after subtracting a hard decision penalty of slightly less than 2 dB. These results, developed in non-asymptotic regimes, are consistent with prior asymptotic results (for a large number of nodes and low per-node SNR) on hard decisions in binary communication systems. We next consider the problem of estimating and tracking channels in a distributed transmission system with multiple transmitters and multiple receivers. In order to track and predict the effective channel between each transmit node and each receive node to facilitate coherent transmission, a linear time-invariant state- space model is developed and is shown to be observable but nonstabilizable. To quantify the steady-state performance of a Kalman filter channel tracker, two methods are developed to efficiently compute the steady-state prediction covariance. An asymptotic analysis is also presented for the homogenous oscillator case for systems with a large number of transmit and receive nodes with closed-form results for all of the elements in the asymptotic prediction covariance as a function of the carrier frequency, oscillator parameters, and channel measurement period. Numeric results confirm the analysis and demonstrate the effect of the oscillator parameters on the ability of the distributed transmission system to achieve coherent transmission. In recent years, the development of efficient radio frequency (RF) radiation wireless power transfer (WPT) systems has become an active research area, motivated by the widespread use of low-power devices that can be charged wirelessly. In this dissertation, we next consider a time division multiple access scenario where a wireless access point transmits to a group of users which harvest the energy and then use this energy to transmit back to the access point. Past approaches have found the optimal time allocation to maximize sum throughput under the assumption that the users must use all of their harvested power in each block of the "harvest-then-transmit" protocol. This dissertation considers optimal time and energy allocation to maximize the sum throughput for the case when the nodes can save energy for later blocks. To maximize the sum throughput over a finite horizon, the initial optimization problem is separated into two sub-problems and finally can be formulated into a standard box- constrained optimization problem, which can be solved efficiently. A tight upper bound is derived by relaxing the energy harvesting causality. A disadvantage of RF-radiation based WPT is that path loss effects can significantly reduce the amount of power received by energy harvesting devices. To overcome this problem, recent investigations have considered the use of distributed transmit beamforming (DTB) in wireless communication systems where two or more individual transmit nodes pool their antenna resources to emulate a virtual antenna array. In order to take the advantages of the DTB in the WPT, in this dissertation, we study the optimization of the feedback rate to maximize the energy efficiency in the WPT system. Since periodic feedback improves the beamforming gain but requires the receivers to expend energy, there is a fundamental tradeoff between the feedback period and the efficiency of the WPT system. We develop a new model to combine WPT and DTB and explicitly account for independent oscillator dynamics and the cost of feedback energy from the receive nodes. We then formulate a "Normalized Weighted Mean Energy Harvesting Rate" (NWMEHR) maximization problem to select the feedback period to maximize the weighted averaged amount of net energy harvested by the receive nodes per unit of time as a function of the oscillator parameters. We develop an explicit method to numerically calculate the globally optimal feedback period.
93

Power management and power conditioning integrated circuits for near-field wireless power transfer

Fan, Philex Ming-Yan January 2019 (has links)
Near-field wireless power transfer (WPT) technology facilitates the energy autonomy of heterogeneous systems, significantly augmenting complementary metal-oxide-semiconductor field-effect-transistor (CMOS) technology. In low-power wearable devices, existing power conditioning integrated circuits do not maximize the power factor (PF) for rectification and power conversion efficiency (PCE) due to multiple conversion. Additionally, there is no core power management for the entire power flow. The majority of the research focuses on active rectifiers, which reduce the turn-on voltage for rectification. Certain studies target the output voltage regulation via feedback to the transmitter or direct battery charging without power maximization. Firstly, this study investigates a high-power factor WPT front-end circuit that is namely the mono-periodic switching rectifier (MPSR) and implemented in a 0.18µm 1.8V/5V CMOS process. Integrated phase synchronizers are used to align the waveshape of a wirelessly-coupled sinusoidal voltage source in a receiving coil to the corresponding conducting current. Using this approach, the PF can be increased from roughly 0.6 to unity without requiring any wireless or wired feedback to the transmitter. The proposed MPSR can also provide AC-DC rectification, and step up and down the sinusoidal voltage source's peak amplitude using a pulse-width modulator. Measured voltage conversion ratios range between 0.73X and 2X, and the PF can be boosted up to unity. Secondly, the wireless power system-on-chip (WPower-SoC) is proposed and implemented in a 0.18µm 1.8V/3.3V CMOS process. The WPower-SoC integrating power management can provide rectification, output voltage regulation, and battery charging. Additionally, the implementation of feedforward envelope detection (FED) can reduce the variation in a wireless power link and improve load transient responses. Simulated results demonstrate that 5% of the output voltage regulation is improved when an output load changes. Moreover, the FED reduces approximately 40% of the transient response time. Overshoot and undershoot voltages are decreased by 23% and 26.5%, respectively. The measured output voltage regulates at 3.42V and can supply output power up to 342mW. A temperature sensor as part of the power management core remains active when the WPT receivers enter sleep mode to prolong the battery usage time. In the final part of this study, a nano-watt high-accuracy temperature sensing core is implemented in a 0.18µm 1.8V/3.3V CMOS process that can self-compensate the temperature shift without the need for additional compensating techniques that consume extra power.
94

Bidirectional Electric Vehicles Service Integration in Smart Power Grid with Renewable Energy Resources

Mohamed, Ahmed A S, Mr 09 November 2017 (has links)
As electric vehicles (EVs) become more popular, the utility companies are forced to increase power generations in the grid. However, these EVs are capable of providing power to the grid to deliver different grid ancillary services in a concept known as vehicle-to-grid (V2G) and grid-to-vehicle (G2V), in which the EV can serve as a load or source at the same time. These services can provide more benefits when they are integrated with Photovoltaic (PV) generation. The proper modeling, design and control for the power conversion systems that provide the optimum integration among the EVs, PV generations and grid are investigated in this thesis. The coupling between the PV generation and integration bus is accomplished through a unidirectional converter. Precise dynamic and small-signal models for the grid-connected PV power system are developed and utilized to predict the system’s performance during the different operating conditions. An advanced intelligent maximum power point tracker based on fuzzy logic control is developed and designed using a mix between the analytical model and genetic algorithm optimization. The EV is connected to the integration bus through a bidirectional inductive wireless power transfer system (BIWPTS), which allows the EV to be charged and discharged wirelessly during the long-term parking, transient stops and movement. Accurate analytical and physics-based models for the BIWPTS are developed and utilized to forecast its performance, and novel practical limitations for the active and reactive power-flow during G2V and V2G operations are stated. A comparative and assessment analysis for the different compensation topologies in the symmetrical BIWPTS was performed based on analytical, simulation and experimental data. Also, a magnetic design optimization for the double-D power pad based on finite-element analysis is achieved. The nonlinearities in the BIWPTS due to the magnetic material and the high-frequency components are investigated rely on a physics-based co-simulation platform. Also, a novel two-layer predictive power-flow controller that manages the bidirectional power-flow between the EV and grid is developed, implemented and tested. In addition, the feasibility of deploying the quasi-dynamic wireless power transfer technology on the road to charge the EV during the transient stops at the traffic signals is proven.
95

Design of Wireless Power Transfer and Data Telemetry System for Biomedical Applications

Islam, Ashraf Bin 01 December 2011 (has links)
With the advancement of biomedical instrumentation technologies sensor based remote healthcare monitoring system is gaining more attention day by day. In this system wearable and implantable sensors are placed outside or inside of the human body. Certain sensors are needed to be placed inside the human body to acquire the information on the vital physiological phenomena such as glucose, lactate, pH, oxygen, etc. These implantable sensors have associated circuits for sensor signal processing and data transmission. Powering the circuit is always a crucial design issue. Batteries cannot be used in implantable sensors which can come in contact with the blood resulting in serious health risks. An alternate approach is to supply power wirelessly for tether-less and battery- less operation of the circuits.Inductive power transfer is the most common method of wireless power transfer to the implantable sensors. For good inductive coupling, the inductors should have high inductance and high quality factor. But the physical dimensions of the implanted inductors cannot be large due to a number of biomedical constraints. Therefore, there is a need for small sized and high inductance, high quality factor inductors for implantable sensor applications. In this work, design of a multi-spiral solenoidal printed circuit board (PCB) inductor for biomedical application is presented. The targeted frequency for power transfer is 13.56 MHz which is within the license-free industrial, scientific and medical (ISM) band. A figure of merit based optimization technique has been utilized to optimize the PCB inductors. Similar principal is applied to design on-chip inductor which could be a potential solution for further miniaturization of the implantable system. For layered human tissue the optimum frequency of power transfer is 1 GHz for smaller coil size. For this reason, design and optimization of multi-spiral solenoidal integrated inductors for 1 GHz frequency is proposed. Finally, it is demonstrated that the proposed inductors exhibit a better overall performance in comparison with the conventional inductors for biomedical applications.
96

Design and control of inductive power transfer system for electric vehicle charging / Conception et contrôle du système de transfert de puissance par induction pour la recharge électrique des véhicules

Ferraro, Luigi 03 May 2017 (has links)
Au cours de la dernière décennie, le grand public a pris conscience de l’impact économique, social et environnemental de la pollution dû à l’usage des énergies fossiles. Non seulement du fait de la raréfaction des énergies fossiles mais aussi la limitation de leur usage et de leur impact sur l’environnement est important, ce qui amène à remplacer ces sources traditionnelles par des sources d’énergie alternatives, propres et renouvelables. Depuis ces dernières années l’industrie automobile montre un intérêt croissant pour la conception de véhicules électriques hybrides. Cependant la transition vers un parc de voitures plus électriques est limitée par le coût encore élevé, l’autonomie et le temps de recharge électrique long. Un système distribué de transfert de puissance par induction (IPT) peut être une solution pour rallonger l’autonomie des véhicules électriques (EV’s) en permettant la recharge tout en roulant, grâce à des séries d’inducteurs couplés, réduisant aussi la taille de la batterie nécessaire et donc son coût. Le concept de transfert de puissance sans fil a été introduit il y a plus de 20 ans. Aujourd’hui les avancées technologiques et les hauts rendements des composants rendent cette solution viable pour les applications transport. Ce travail de thèse concerne donc le design et le contrôle d’un système de recharge efficace par induction d’une batterie à bord d’un véhicule sujet dans ce cas à des désalignements entre inducteurs. Un état de l’art sur le principe de transfert de puissance par induction est effectué et une structure DD-BP est proposée afin d’avoir un bon rendement pour le transfert de puissance et une moindre sensibilité en présence de désalignement et au mouvement, un inducteur étant sous la route, l’autre à bord du véhicule. Pour cela les dimensionnements de ces inducteurs et les analyses de l’impact des structures des inducteurs sont effectués par simulation à éléments finis des champs magnétiques produits et échangés. De plus, un modèle circuit équivalent et un modèle mathématique ont été établis incluant des circuits compensateurs. L’ensemble du système IPT a été séparé en deux parties, l’une alternative (AC), l’autre continue (DC). La simulation du modèle électrique (PSIM) et mathématique (MATLAB) montrent une bonne correspondance, à l’aide du modèle mathématique une étude complète a été possible en fonction des fréquences, des courants et des désalignements selon les 3 axes. La structure IPT spécifique pour cette application EV montre la faisabilité et l’efficacité de la recharge de la batterie en mouvement, en fixant une fréquence, malgré un assez grand entrefer (distance z entre la route et le châssis) et des variations de couplage (désalignement x ou y). Ce bon comportement est obtenu par le design des inducteurs et le bon contrôle des convertisseurs de recharge de la batterie (double buck-boost). / During the last decades, public awareness of the environmental, economic and social consequences of using fossil fuels has considerably grown. Moreover, not only the supply of fossil resources is limited, but also the environmental impact represents a relevant issue, so leading to an increased consideration of clean and renewable alternatives to traditional technologies. During recent years, the automotive industry has shown a growing interest in electric and hybrid electric vehicles. However, the transition to all-electric transportation is now limited by the high cost of the vehicles, the limited range and the long recharging time. Distributed IPT (inductive power transfer) systems can be the solution to the range restrictions of EVs by charging the vehicle while driving thanks to, a set of loosely coupled coils, so also reducing required battery size as well as overall cost of the vehicle. The concept of wireless power transfer via magnetic induction was introduced two decades ago. Nowadays, this technology is becoming more efficient and more suitable for new applications. This dissertation made an effort to address the requirements of IPT EV battery charging system with high efficiency and good tolerance to misalignment. A survey of a typical IPT for EV application has been reported, while a concentrated DD-BP solution has been proposed in order to enhance the IPT charging system capability of transferring power to a stationary EV with good efficiency and good tolerance to movement. The current trend in EV battery charging application is represented by the lamped coil system, whose different structures have been reviewed. Moreover, this thesis presented the design of a charging pad magnetic structure, called Double D pad combined with a Bipolar secondary pad, in order to enhance coupling performance. A finite element magnetic analysis has been performed in order to obtain the electric parameters of the proposed magnetic coupler. Furthermore, a mathematical model has been developed by considering the different sides of the system. The mathematical model allows to accurately predict the behavior of inductive coils and coreless transformer. A set of simulation has been carried out in order to compare the analytical and simulated results. The proposed EV IPT system has shown the feasibility of using fixed frequency, single pick up system to transfer power efficiently across a large air gap, with variable coupling. This result has been reached by means of proper design of the charging pad magnetics, of tuning network and of a pick-control based on a buck boost converter topology.
97

Conception et réalisation de rectenna en technologie guide d'onde coplanaire pour de faibles niveaux de puissance / Conception and realization of rectenna in coplanar waveguide technology for low power levels

Rivière, Jérôme 16 September 2016 (has links)
Le sujet de thèse abordé dans ce mémoire s'inscrit dans la thématique du LE²P sur l'autonomie énergétique des réseaux de capteurs. Ce travail est axé sur la partie réception et redressement du transfert de l'énergie sans fil pour l'apport d'énergie à des capteurs nomades. Ce procédé n'est pas nouveau et prend son origine dans les années 1950. Les connaissances dans l'appréhension de ce processus sont nombreuses pour certains guides d'onde tels que le microruban. Mais la nécessité de perçages dans ces structures de guide d'onde peut être contraignante et causer des disparités dans une chaîne de construction. Ceci a motivé les travaux présentés dans ce mémoire qui utilise une technologie de guide d'onde coplanaire (CPW) peu exploitée. Ainsi, la conception d'un tel dispositif passe par la maîtrise d'un point de vue conceptuel et expérimental de cette technologie. La démarche consiste à utiliser ce guide d'onde coplanaire en minimisant les effets négatifs que peut engendrer ce dernier, pour s'abroger du besoin de perçage et faciliter la réalisation des dispositifs de redressement en limitant le nombre d'interactions humaines. / The thesis subject dealt in this report lies in the LE²P framework on the energy sustainability of wireless sensor network. This work is dedicated to the reception and rectifying part of wireless power transfer to give energy sustainability to nodes in a sensor network. This process is not new and originate from the years 1950. The behavior of this process is since well-known in several waveguide such technology as microstrip. But the need of drill in those waveguide circuit may be inconvenient and lead to discrepancy from one circuit to another. This was the motivational keystone to the work address in this report which uses coplanar waveguide (CPW) over microstrip. The conception of such devices goes through a good conceptual and experimental understanding of the waveguide technology. The approach in this document consists of using coplanar waveguide while minimizing its drawbacks, in order to avoid drilling in the substrate and ease the realization of the rectifying part by limiting the human interaction.
98

WIRELESS POWER TRANSFER USING OPEN-WIRE TRANSMISSION LINE COUPLING

Brian J Vaughn (8052236) 14 January 2021 (has links)
<div> <div> <div> <div> <p>This dissertation presents and develops a novel method of wireless power transfer that relies on electromagnetic coupling from open-wire transmission lines instead of tra- ditional methods. Wireless power transfer techniques are being rapidly pursued in re- search currently due to the potential utility of powering devices over the air instead of with direct electrical connections. Uses for such techniques include an array of ap- plications from consumer electronics, to medical devices, to cars and UAVs. While con- ventional wireless power transfer techniques exist, it is shown here that open-wire trans- mission line methods present distinct advantages for certain applications. In particular, wireless power transfer using Goubau and twin-lead line architectures will be conceptual- ized and investigated in terms of their theory, design, and efficiency performance. Fur- ther, a circuit model theory will be developed in this work to provide a generalized for- mulation for open-wire-line wireless power transfer analysis. Additionally, receiver de- sign techniques will be outlined and geometries based on metamaterial principles will be pursued in order to achieve receiver miniaturization and access the applications this af- fords. </p> </div> </div> </div> </div>
99

Wireless Power Transfer: Efficiency, Far Field, Directivity, and Phased Array Antennas

Abigail Jubilee Kragt Finnell (10867179) 05 August 2021 (has links)
This thesis is an examination of one of the main technologies to be developed on the path to Space Solar Power (SSP): Wireless Power Transfer (WPT), specifically power beaming. While SSP has been the main motivation for this body of work, other applications of power beaming include ground-to-ground energy transfer, ground to low-flying satellite wireless power transfer, mother-daughter satellite configurations, and even ground-to-car or ground-to-flying-car power transfer. More broadly, Wireless Power Transfer falls under the category of radio and microwave signals; with that in mind, some of the topics contained within can even be applied to 5G or other RF applications. The main components of WPT are signal transmission, propagation, and reception. This thesis focuses on the transmission and propagation of wireless power signals, including beamforming with Phased Array Antennas (PAAs) and evaluations of transmission and propagation efficiency. Signals used to transmit power long distances must be extremely directive in order to deliver the power at an acceptable efficiency and to prevent excess power from interfering with other RF technology. Phased array antennas offer one method of increasing the directivity of a transmitted beam through off-axis cancellation from the multi-antenna source. Besides beamforming, another focus of this work is on the equations used to describe the efficiency and far field distance of transmitting antennas. Most previously used equations, including the Friis equation and the Goubau equation, are formed by examining singleton antennas, and do not account for the unique properties of antenna arrays. Updated equations and evaluation methods are presented both for the far field and the efficiency of phased array antennas. Experimental results corroborate the far field model and efficiency equation presented, and the implications of these results regarding space solar power and other applications are discussed. The results of this thesis are important to the applications of WPT previously mentioned, and can also be used as a starting point for further WPT and SSP research, especially when looking at the foundations of PAA technology.
100

Design of an Automated Test Setup for Power-Controlled Nerve Stimulator Using NFC for Implantable Sensors

Aasa, Amanda, Svennblad, Amanda January 2021 (has links)
Electrical stimulation on nerves is a relatively new area of research and has been proved to speed up recoveryfrom nerve damage. In this work, the efficiency and stability of antennas integrated on printed circuit boards provided by the department of electrical engineering are examined. An automated test bench containing a stepmotor with a slider and an Arduino is created. Different setups were used when measuring on the boards, which resulted in that the largest antenna gave the most stable output despite the distance between transmitterand receiver. The conclusion was that the second best antenna and the smallest one would be suitable as well,and the better choice if it is to be implemented under the skin. A physical setup consisting of LEDs, an Arduino, a computer, and a function generator was created to examinethe voltage control functionality, where colored LEDs were lit depending on the voltage level. The functionality was then implemented in a circuit that in the future shall be integrated on the printed circuit board. To control high voltages a limiter circuit was examined and implemented. The circuit was simulated and tested, with a realization that a feature covering voltage enlargement is needed for the future.

Page generated in 0.0676 seconds