• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 13
  • 12
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 133
  • 133
  • 94
  • 56
  • 44
  • 35
  • 27
  • 23
  • 19
  • 18
  • 16
  • 16
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

A Systems-Level Approach to the Design, Evaluation, and Optimization of Electrified Transportation Networks Using Agent-Based Modeling

Willey, Landon Clark 16 June 2020 (has links)
Rising concerns related to the effects of traffic congestion have led to the search for alternative transportation solutions. Advances in battery technology have resulted in an increase of electric vehicles (EVs), which serve to reduce the impact of many of the negative consequences of congestion, including pollution and the cost of wasted fuel. Furthermore, the energy-efficiency and quiet operation of electric motors have made feasible concepts such as Urban Air Mobility (UAM), in which electric aircraft transport passengers in dense urban areas prone to severe traffic slowdowns. Electrified transportation may be the solution needed to combat urban gridlock, but many logistical questions related to the design and operation of the resultant transportation networks remain to be answered. This research begins by examining the near-term effects of EV charging networks. Stationary plug-in methods have been the traditional approach to recharge electric ground vehicles; however, dynamic charging technologies that can charge vehicles while they are in motion have recently been introduced that have the potential to eliminate the inconvenience of long charging wait times and the high cost of large batteries. Using an agent-based model verified with traffic data, different network designs incorporating these dynamic chargers are evaluated based on the predicted benefit to EV drivers. A genetic optimization is designed to optimally locate the chargers. Heavily-used highways are found to be much more effective than arterial roads as locations for these chargers, even when installation cost is taken into consideration. This work also explores the potential long-term effects of electrified transportation on urban congestion by examining the implementation of a UAM system. Interdependencies between potential electric air vehicle ranges and speeds are explored in conjunction with desired network structure and size in three different regions of the United States. A method is developed to take all these considerations into account, thus allowing for the creation of a network optimized for UAM operations when vehicle or topological constraints are present. Because the optimization problem is NP-hard, five heuristic algorithms are developed to find potential solutions with acceptable computation times, and are found to be within 10% of the optimal value for the test cases explored. The results from this exploration are used in a second agent-based transportation model that analyzes operational parameters associated with UAM networks, such as service strategy and dispatch frequency, in addition to the considerations associated with network design. General trends between the effectiveness of UAM networks and the various factors explored are identified and presented.
102

Conception et réalisation de rectennas utilisées pour la récupération d'énergie électromagnétique pour l'alimentation de réseaux de capteurs sans fils / Design of rectennas for electromagnetic energy harvesting in order to supply autonomous wireless sensors

Okba, Abderrahim 20 December 2017 (has links)
L'électronique a connu une évolution incontestable ces dernières années. Les progrès réalisés, notamment dans l'électronique numérique et l'intégration des circuits, ont abouti à des systèmes plus performants, miniatures et à faible consommation énergétique. Les évolutions technologiques, alliant les avancées de l'informatique et des technologies numériques et leur intégration de plus en plus poussée au sein d'objets multiples, ont permis le développement d'un nouveau paradigme de systèmes qualifiés de systèmes cyber-physiques. Ces systèmes sont massivement déployés de nos jours grâce à l'expansion des applications liées à l'Internet Des Objets (IDO). Les systèmes cyber-physiques s'appuient, entre autre, sur le déploiement massif de capteurs communicants sans fil autonomes, ceux-ci présentent plusieurs avantages : * Flexibilité dans le choix de l'emplacement. Ils permettent l'accès à des zones dangereuses ou difficiles d'accès. * Affranchissement des câbles qui présentent un poids, un encombrement et un coût supplémentaire. * Elimination des problèmes relatifs aux câbles (usure, étanchéité...) * Facilité de déploiement de réseaux de capteurs Cependant, ces capteurs sans fils nécessitent une autonomie énergétique afin de fonctionner. Les techniques conventionnelles telles que les batteries ou les piles, n'assurent le fonctionnement des capteurs que pour une durée limitée et nécessitent un changement périodique. Ceci présente un obstacle dans le cas où les capteurs sans fils sont placés dans un endroit où l'accès est impossible. Il est donc nécessaire de trouver un autre moyen d'approvisionner l'énergie de façon permanente à ces réseaux de capteurs sans fil. L'intégration et la miniaturisation des systèmes électroniques ont permis la réalisation de systèmes à faible consommation, ce qui a fait apparaître d'autres techniques en termes d'apports énergétiques. Parmi ces possibilités se trouvent la récupération d'énergie électromagnétique et le transfert d'énergie sans fil (TESF). En effet, l'énergie électromagnétique est de nos jours, omniprésente sur notre planète, l'utiliser donc comme source d'énergie pour les systèmes électroniques semble être une idée plausible et réalisable. Cette thèse s'inscrit dans ce cadre, elle a pour objectif la conception et la fabrication de systèmes de récupération d'énergie électromagnétique pour l'alimentation de réseaux de capteurs sans fil. Le circuit de récupération d'énergie électromagnétique est appelé " Rectenna ", ce mot est l'association de deux entités qui sont " antenne " et " rectifier " qui désigne en anglais le " redresseur ". L'antenne permet de récupérer l'énergie électromagnétique ambiante et le redresseur la convertit en un signal continu (DC) qui servira par la suite à alimenter les capteurs sans fil. Dans ce manuscrit, plusieurs rectennas seront présentées, pour des fréquences allant des bandes GSM 868MHz, 915MHz, passant par l'UMTS à 2GHZ et WIFI à 2,45GHz, et allant jusqu'aux bandes Ku et Ka. / The electronic domain has known a significant expansion the last decades, all the advancements made has led to the development of miniature and efficient electronic devices used in many applications such as cyber physical systems. These systems use low-power wireless sensors for: detection, monitoring and so on. The use of wireless sensors has many advantages: * The flexibility of their location, they allow the access to hazardous areas. * The realization of lighter system, less expensive and less cumbersome. * The elimination of all the problems associated to the cables (erosion, impermeability...) * The deployment of sensor arrays. Therefore, these wireless sensors need to be supplied somehow with energy to be able to function properly. The classic ways of supplying energy such as batteries have some drawbacks, they are limited in energy and must be replaced periodically, and this is not conceivable for applications where the wireless sensor is placed in hazardous places or in places where the access is impossible. So, it is necessary to find another way to permanently provide energy to these wireless sensors. The integration and miniaturization of the electronic devices has led to low power consumption systems, which opens a way to another techniques in terms of providing energy. Amongst the possibilities, we can find the Wireless Power Transfer (WPT) and Energy Harvesting (EH). In fact, the electromagnetic energy is nowadays highly available in our planet thanks to all the applications that use wireless systems. We can take advantage of this massive available quantity of energy and use it to power-up the low power wireless sensors. This thesis is incorporated within the framework of WPT and EH. Its objective is the conception and realization of electromagnetic energy harvesters called "Rectenna" in order to supply energy to low power wireless sensors. The term "rectenna" is the combination of two words: Antenna and Rectifier. The Antenna is the module that captures the electromagnetic ambient energy and converts it to a RF signal, the rectifier is the RF circuit that converts this RF signal into a continuous (DC) signal that is used to supply the wireless sensors. In this manuscript, several rectennas will be presented, for different frequencies going from the GSM frequencies (868 MHz, 915 MHz) to the Ku/Ka bands.
103

Wireless power transfer: a reconfigurable phased array with novel feeding architecture

Szazynski, Mitchel H. 13 April 2018 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This thesis proposes a reconfigurable phased array of antennas for wireless power transfer. The array finds use in many applications, from drone destruction (for defense) to wireless charging of robots and mobile devices. It utilizes a novel feeding architecture to greatly reduce the number of high cost elements (such as amplifiers and phase shifters) as well as the quantity of unused resources in the system. Upon the instruction of the CPU, the array can separate into any number of subarrays, each of which transmits power to a single receiver, steering its beam as the receiver changes location. Currently dormant elements in the array can be used to provide position information about the receivers, either via Radar, or by listening for beacons pulses from the receiver. All of this is made possible, with only 4 amplifiers and 3 phase shifters, by the proposed 4-Bus Method. The source signal is divided into four buses, which are respectively phase shifted by 270 degrees, 180 degrees, 90 degrees, and 0 degrees (no shifter required) and then amplified. The CPU calculates, based on the number and positions of the receivers / targets, what the amplitude and phase excitation must be at each element. Any phase and amplitude which could be required can be achieved by simply adding together appropriate quantities of the correct two buses. In order to achieve this, the key piece is the variable power divider. These differ from Wilkinson dividers in that the dividing ratio can be changed via an applied DC voltage. Therefore, at each junction, by properly diverting the power levels on each phase bus to their proper location, complete delocalization of both amplifiers and phase shifters can be achieved. A method has also been developed which helps overcome the limitations of each variable power divider. That is, in certain instances, it may be desirable to pass all the power to a single output port or the other, which is not a possibility inherently possible with the device. With the use of a unique combination of RF switches, the nodes achieve much enhanced flexibility. Finally, an intensive study is carried out, in an attempt to yield greater understanding, as well as quick, useful approximations, of the behaviors of both rectangular and hexagonal arrays of various sizes and beam steering angles for wireless power.
104

Optimization of Inductive Wireless Charging Systems for Electric Vehicles: Minimizing Magnetic Losses and Limiting Electromagnetic Field Emissions

Mohammad, Mostak 29 August 2019 (has links)
No description available.
105

Magnetic Induction Communication in Challenging Environments

Gulati, Rajpreet Kaur, 0000-0002-5866-2811 January 2022 (has links)
Radio frequency (RF) communication, although most popular, is unsuitable for environments involving aqueous and animal/plant tissue media, cluttered environments (e.g., small regions with many radios), applications requiring extremely low power consumption, etc. For such environments, magnetic induction (MI) communication appears to be a viable new technology. It has many desirable properties for propagation in challenging environments. In this thesis, we have experimentally explored the use of Magnetic Induction (MI) based communications for communication through the body. Such communication modalities are essential for wireless communication between implanted therapeutic devices. RF is known to work poorly in this environment due to primarily an ionized aqueous propagation media. We have built a custom experimental testbed using magnetic coils and performed simulations of intrabody propagation for MI based communication using the Sim4Life package. Ultrasound (US) communications have been explored extensively for intra-body environments, and we compare MI against US as well. We experimentally showed that ultrasonic coupling (USC) works better than magnetic resonance coupling (MRC) for transmission through the body at 8 MHz frequency, as USC generates more power than MRC. We have also experimentally compared MR coupling against other forms of intra-body communication, such as galvanic and capacitive. We have done a deep in-depth study of in/on body simulation. According to those studies, the simulations work quite well, and yield a percentage error in the power received for USC as 3-4 %, while for MRC, as 4-5 %. The orientation of USC and MRC sensors causes only 1-2 % error, which doesn't have much impact. / Computer and Information Science
106

Dynamic modelling of a power transfer unit of all-wheel drive vehicle in a 1-D simulation environment / Dynamisk 1-D modell av en kraftenhet till en bil med allhjulsdrift

Ambalavanan, Shivanand January 2018 (has links)
En Power Transfer Unit (PTU) eller vinkelväxel i ett drivsystem för allhjulsdrift är enväxellåda med en hypoid-växel som drevsats. PTUn ar placerad mellan fordonets transmissionoch kardanaxel och används för att fördela momentet från drivsystemet mellanalla hjulen. De dynamiska egenskaperna hos vinkelväxeln är kopplade till de ljud ochvibrationer som uppfattas i bilen, speciellt tonalt ljud som växelvin. Källan till dennavibration kan relateras till transmissionsfelet i växeln. Transmissionsfelet beror pa faktorersom geometri, rotationshastighet och statiskt moment. Om faktorernas inverkankan identieras skapar det möjligheter att reducera felet genom designförändringar. 1D ellersystem-simulering ar en förenklad beskrivning av det dynamiska beteendet av systemet.Det är en flexibel metod som kan ge en uppskattning av systemets egenskaper iett tidigt skede och kan användas i såväl tids- som frekvensdomönen.Denna studie syftar till att bygga en 1-D system-modell av en PTU och studera dessdynamiska beteende. De typer av analyser och resultat som ar möjliga att få från en dynamisk1-D modell av en specic produkt har utvärderats. Befintliga komponenter frånmjukvarans bibliotek har används for att bygga en förenklad modell med lumpade massorav den fysiska systemet. Simuleringar har utförts både i tidsdomänen och frekvensdomänen.System-modellen är mycket användbar för modelling av hela system och av hur delarnaväxelverkar i ett tidigt skede av produktutvecklingen. Beräkningen av nivån på transmissionsfeletsgrundtonen stämmer väl med tillgängliga mätresultat. Rotationshastigheternasvariation då kopplingen kopplar i och ur vinkelväxeln illustrerar tydligt kopplingensinverkan på dynamiken i systemet. Det var dessutom möjligt att erhålla systemets torsionsegenfrekvenseroch modformer från den linjära frekvensanalysen. / A Power Transfer Unit (PTU) of an All-Wheel Drive system is a hypoid gearbox whichis a driveline component, used to distribute power from the powertrain to all the wheelsof a vehicle. The gearbox dynamics is closely related to the gearbox noise and vibration,especially tonal noise like gear whine. The source of this vibration is referred to as thetransmission error in the unit. Transmission error is attributed to various geometricaland operating conditions, which if mapped mathematically, allows the designer to reducethe error by varying the design parameters. The demand in the automotive industry toreduce time to market is high. A lot of time can be saved if system performance can beassessed at the concept stage, even before the detailed design. This is where system-levelsimulation plays a key role. 1-D or system simulation technique studies the dynamicbehaviour of the system in one dimension. This greatly simplies the model and allowsfor the exibility to get early estimates of the system behaviour with respect to time andfrequency. Here, such a system model is built for a hypoid gear based driveline system.This work aims to build a 1-D system model of the PTU and study the dynamic behaviourof the response. The evaluation helps in understanding the capabilities on 1-D systemmodel in simulating a specialised product dynamic characteristics. LMS AMESim wasthe commercial tool used in building the system model. Existing components from thesoftware library were used to build a sketch of a simplied, lumped mass model of thephysical system. The model was then simulated in both the time domain and frequencydomain through a temporal and linear analysis respectively.It is observed that the system model is very useful in early modelling of a system and itsinteractive eects. The fundamental harmonic of the transmission error is predicted wellin the system model. The clutch connect/disconnect behaviour can also be seen in therotary velocity response of the gear. The system eigenfrequencies and mode shapes wereobtained from the linear analysis.
107

Wireless Charging Technology Infrastructure for Ferries in Göteborg (Västra Götaland)

Akinboyewa, Christopher, Udrescu, Elena Simona January 2023 (has links)
The maritime transport sector makes a significant contribution to greenhouse gas (GHG) emissions, playing a consistent and increasing part in global CO2 emissions. Electrification of marine transportation is a key and necessary step for achieving the goals of the Paris Agreement and for avoiding the worst consequences of climate change. Sweden is among the first countries pleading for zero-emission transportation within 2045. However, one of the key challenges facing the widespread adoption of electric boats is the availability and efficiency of charging infrastructure.  Wireless power transfer technology with more focus on inductive power transfer technology in the marine sector was investigated. The focus is wireless charging infrastructure for passenger ferries in Goteborg. Vesta was the ferry chosen for the case study and it operates on the Saltholmen to Vrångö route. The route, schedule, and ferry energy consumption were investigated to implement the wireless charging infrastructure. Swot analysis was performed to show the strengths, weaknesses, opportunities, and threats of the research. Based on this investigation, the power profile, energy storage, and adopted solution with its system were proposed.
108

Development and Characterization of a Tunable Resonant Shielded Loop Wireless Non-Radiative Power Transfer System

Heebl, Jason Daniel 16 May 2011 (has links)
No description available.
109

Analysis and Design of High-Frequency Soft-Switching DC-DC Converter for Wireless Power Charging Applications

Danekar, Abhishek V. 09 May 2017 (has links)
No description available.
110

Dynamics of Multi-functional Acoustic Holograms in Contactless Ultrasonic Energy Transfer Systems

Bakhtiari Nejad, Marjan 28 August 2020 (has links)
Contactless ultrasonic power transfer (UPT), using piezoelectric transducers, is based on transferring energy using acoustic waves, in which the waves are generated by an acoustic source or transmitter and then transferred through an acoustic medium such as water or human tissue to a sensor or receiver. The receiver then converts the mechanical strain induced by the incident acoustic waves to electricity and delivers to an electrical load, in which the electrical power output of the system can be determined. The execution and efficiency of this technology can be significantly enhanced through patterning, focusing, and localization of the transmitted acoustic energy in space to simultaneously power pre-determined distributed sensors or devices. A passive 3D-printed acoustic hologram plate alongside a single transducer can generate arbitrary and pre-designed ultrasound fields in a particular distance from the hologram mounted on the transmitter, i.e., a target plane. This dissertation presents the use of these simple, cost-effective, and high-fidelity acoustic holograms in UPT systems to selectively enhance and pattern the electrical power output from the receivers. Different holograms are numerically designed to create single and multi-focal pressure patterns in a target plane where an array of receivers are placed. The incident sound wave from a transmitter, after passing through the hologram, is manipulated, hence, the output field is the desired pressure field, which excites the receivers located at the pre-determined focal points more significantly. Furthermore, multi-functional holograms are designed to generate multiple images at different target planes and driving frequencies, called, respectively, multi-image-plane and multi-frequency patterning holograms. The multiple desired pressure distributions are encoded on the single hologram plate and each is reconstructed by changing the axial distance and by switching the frequency. Several proof-of-concept experiments are performed to verify the functionality of the computationally designed holograms, which are fabricated using modern 3D-printers, i.e., the desired wavefronts are encoded in the hologram plates' thickness profile, being input to the 3D-printer. The experiments include measurement of output pressure fields in water using needle hydrophones and acquisition of receivers' voltage output in UPT systems. Another technique investigated in this dissertation is the implementation of acoustic impedance matching layers deposited on the front leading surface of the transmitter and receiver transducers. Current UPT systems suffer from significant acoustic losses through the transmission line from a piezoelectric transmitter to an acoustic medium and then to a piezoelectric receiver. This is due to the unfavorable acoustic impedance mismatch between the transducers and the medium, which causes a narrow transducer bandwidth and a considerable reflection of the acoustic pressure waves at the boundary layers. Using matching layers enhance the acoustic power transmission into the medium and then reinforce the input as an excitation into the receiver. Experiments are performed to identify the input acoustic pressure from a cylindrical transmitter to a receiver disk operating in the 33-mode of piezoelectricity. Significant enhancements are obtained in terms of the receiver's electrical power output when implementing a two-layer matching structure. A design platform is also developed that can facilitate the construction of high-fidelity acoustically matched transducers, that is, the material layers' selection and determination of their thicknesses. Furthermore, this dissertation presents a numerical analysis for the dynamical motions of a high-intensity focused ultrasound (HIFU)-excited microbubble or stable acoustic cavitation, which includes the effects of acoustic nonlinearity, diffraction, and absorption of the medium, and entails the problem of several biomedical ultrasound applications. Finally, the design and use of acoustic holograms in microfluidic channels are addressed which opens the door of acoustic patterning in particle and cell sorting for medical ultrasound systems. / Doctor of Philosophy / This dissertation presents several techniques to enhance the wireless transfer of ultrasonic energy in which the sound wave is generated by an acoustic source or transmitter, transferred through an acoustic medium such as water or human tissue to a sensor or receiver. The receiver transducer then converts the vibrational energy into electricity and delivers to an electrical load in which the electrical power output from the system can be determined. The first enhancement technique presented in this dissertation is using a pre-designed and simple structured plate called an acoustic hologram in conjunction with a transmitter transducer to arbitrarily pattern and shape ultrasound fields at a particular distance from the hologram mounted on the transmitter. The desired wavefront such as single or multi-focal pressure fields or an arbitrary image such as a VT image pattern can simply be encoded in the thickness profile of this hologram plate by removing some of the hologram material based on the desired shape. When the sound wave from the transmitter passes this structured plate, it is locally delayed in proportion to the hologram thickness due to the different speed of sound in the hologram material compared to water. In this dissertation, various hologram types are designed numerically to implement in the ultrasonic power transfer (UPT) systems for powering receivers located at the predetermined focal points more significantly and finally, their functionality and performances are verified in several experiments. Current UPT systems suffer from significant acoustic losses through the transmission from a transmitter to an acoustic medium and then to a receiver due to the different acoustic impedance (defined as the product of density and sound speed) between the medium and transducers material, which reflects most of the incident pressure wave at the boundary layers. The second enhancement technology addressed in this dissertation is using intermediate materials, called acoustic impedance matching layers, bonded to the front side of the transmitter and receiver face to alleviate the acoustic impedance mismatch. Experiments are performed to identify the input acoustic pressure from a transmitter to a receiver. Using a two-layer matching structure, significant enhancements are observed in terms of the receiver's electrical power output. A design platform is also developed that can facilitate the construction of high-fidelity acoustically matched transducers, that is, the material layers' selection and determination of their thicknesses. Furthermore, this dissertation presents a numerical analysis for the dynamical motions of a microbubble exposed to a high-intensity focused ultrasound (HIFU) field, which entails the problem of several biomedical ultrasound applications such as microbubble-mediated ultrasound therapy or targeted drug delivery. Finally, an enhancement technique involving the design and use of acoustic holograms in microfluidic channels is addressed which opens the door of acoustic patterning in particle and cell sorting for medical ultrasound systems.

Page generated in 0.0675 seconds