Spelling suggestions: "subject:"antenna""
1 |
Wideband Reflectarray Using Compact Coupled Element and Rectifying Antenna Combined with ReflectarrayOh, Seong Won 2011 August 1900 (has links)
The reflectarray has been considered as a suitable candidate to replace the conventional parabolic reflectors because of its high-gain, low profile, and beam reconfiguration capability. Narrow bandwidth of the reflectarray is the main obstacle for the various uses of the reflectarray. The wide band element with a large phase variation range and a linear phase response is one of the solutions to increase the narrow bandwidth of the reflectarray. Several elements with a large phase range and a linear response have been developed, but their configurations are complex.
Simple methods have been investigated in this dissertation to develop wide band elements. A microstrip ring and slot element with a large phase range is introduced and modified for a better linear response. A coupled element with a linear response has been developed. A method is proposed to design a two-layer reflectarray with multi-resonant elements of various sizes for wideband operation. The element dimensions are adjusted by Particle Swarm Optimization routine to achieve the appropriate phase distribution for a predetermined frequency band. In another approach to increase the operation bands, a six-band reflectarray has been developed.
As a new application of a reflectarray, a rectifying reflectarray, which is composed of a rectenna and a reflectarray, is introduced in this dissertation. The reflectarray directs RF energy from its aperture to the rectenna located on the feed point of the reflectarray. This configuration eliminates complex feeding networks and design difficulties of the conventional rectenna array.
A Double Sided Parallel Strip Line (DSPSL) is adapted for the feeding network of the Archimedean spiral antenna. The DSPSL operate very well to feed the Archimedean spiral antenna over the bandwidth.
The research presented in this dissertation suggests useful techniques for wideband reflectarrays, wireless power transmission, and wideband antenna designs.
|
2 |
Transmission d'énergie sans fil : Application au réveil à distance de récepteurs en veille zéro consommationMarian, Vlad 21 November 2012 (has links)
Les dispositifs électroniques modernes comportent souvent une ou plusieurs phases de veille, dans lesquelles elles attendent un ordre de réveil de la part d’un actionneur distant (une télécommande). Ces types de dispositifs ont tendance à être de plus en plus présents dans les habitations et dans les bâtiments tertiaires, en particulier dans le domaine de la domotique. Les phases de veille sont caractérisées par des niveaux de consommations très inférieures aux consommations en mode actif des dispositifs, mais les durées de veille sont généralement grandes devant les périodes actives. Ce fait, combiné à la multiplication des dispositifs, mène à des consommations annuelles qui peuvent dépasser 10 % de la facture d’électricité des ménages. Cette étude propose une nouvelle approche de réveil des dispositifs en veille. Au lieu d’avoir une écoute permanente en réception et d’envoyer une trame d’informations de réveil, le récepteur est complètement endormi et est réveillé à travers une impulsion d’énergie transmis par d’ondes électromagnétiques. Une fois que l’étage d’interprétation des données est alimenté, un envoi d’informations est effectué pour valider l’ordre de réveil. En vue des portées attendues pour le système et des contraintes normatives liées aux expositions des personnes aux champs électromagnétiques, une faible quantité d’énergie est disponible en réception pour le réveil du dispositif. Plusieurs topologies de circuits de rectification RF-DC (rectenna) en technologies microstrip sont étudiées à travers des simulations circuit et électromagnétiques. La topologie choisie a été optimisée pour fournir un bon niveau de tension DC pour des faibles niveaux de puissance RF incidente. Une adaptation entre le convertisseur et l’antenne de réception différente de 50 W a été utilisée. Tous ces résultats ont été validés expérimentalement. Au niveau du circuit de réception des données, plusieurs scénarios de fonctionnement ont été comparés. L’étage de démodulation utilise la rectenna comme détecteur à diodes, pour réduire au maximum la consommation et la complexité de mise en œuvre. Le système global a été testé et des gains substantiels sont constatés sur le bilan de consommation annuelle de plusieurs types des dispositifs, comparé à un fonctionnement classique. En parallèle, une architecture de récepteur d’énergie électromagnétique reconfigurable est proposée. Il offre l’avantage de pouvoir exploiter une large gamme de puissance incidente, ce qui n’est pas le cas des structures de rectennas classiques. Des rectennas en technologies discrètes et intégrées sont utilisées, connectées à une antenne commune à travers un switch d’antenne intégrée. Le système proposé est adaptatif et les résultats des tests montrent des améliorations notables de la quantité d’énergie collectée par rapport à des rectennas individuelles. Enfin, le phénomène de l’inversion de la tension dans une association déséquilibrée de rectennas est mis en évidence et des solutions sont proposées. / Modern electronic devices often include one or more phases of stand-by, where they waiting for a wakeup order from a distant actuator (remote control). These devices tend to be increasingly present in homes and in commercial buildings, especially in the field of building automation systems. Stand-by periods are characterized by consumption levels well below those in active mode, but stand-by periods are generally large compared to active periods. This fact, combined with the proliferation of devices, leads to annual consumption which may exceed 10% of the annual household electricity bill. This study proposes a new approach to waking up of stand-by devices. Instead of continuous monitoring of the arrival of the wake-up signal, the receiver is completely asleep and woke up through a pulse of energy transmitted via electromagnetic waves. Once the data receiver module is activated, information is sent to validate the wake-up order. In view of the expected ranges for the system and normative constraints related to exposures to electromagnetic fields, only a small amount of energy is available at receiver level for performing the wake-up. Several RF-DC rectification circuit (rectenna) topologies in microstrip technology are studied through circuit and electromagnetic simulation. The chosen topology has been optimized to provide a good level of DC voltage at low levels of incident RF power. A matching impedance other than 50 W between the converter and the receiving antenna was used. All these results have been validated experimentally. For the data receiver circuit, several operating scenarios were compared. The demodulation stage uses the rectenna as a diode detector to minimize consumption and complexity of implementation. The overall system has been tested and substantial gains are obtained for several types of devices, in terms of annual consumption, compared to classical stand-by devices. At the same time, a reconfigurable electromagnetic energy receiver architecture is proposed. It offers the advantage of exploiting a wide range of incident power, which is not the case of conventional rectenna structures. Rectennas fabricated in discrete and integrated technology are used, connected to a common antenna through an integrated antenna switch. The proposed system is self-adaptive and the test results show significant improvements in the amount of energy collected compared to individual rectennas. Finally, the phenomenon of voltage reversal in unbalanced rectenna associations is highlighted and possible solutions are proposed.
|
3 |
Wideband Phased Array & Rectenna Design and Modeling for Wireless Power TransmissionHansen, Jonathan Noel 2011 December 1900 (has links)
Microstrip patch antennas are the most common type of printed antenna due to a myriad of advantages which encourage use in a wide range of applications such as: wireless communication, radar, satellites, remote sensing, and biomedicine. An initial design for a stacked-patch, broadband, dual-polarized, aperture-fed antenna is tested, and some adjustments are made to improve performance. The design goal is to obtain a 3 GHz bandwidth centered at 10 GHz for each polarization.
Once the single-element design is finalized, it is used in a 4x1 array configuration. An array increases the gain, and by utilizing variable phase-shifters to each element, the pattern can be electronically steered in a desired direction. The phase-can be easily adjusted. The result of this new phased array design is a wide bandwidth system with dual-polarization which can be electronically steered.
Rectennas (rectifying antennas) are used in wireless power transmission (WPT) systems to collect microwave power and convert this power into useable DC power. They find use in many areas such as space power transmission, RFID tags, wireless sensors, and recycling ambient microwave energy.
The ability to simulate rectenna designs will allow for an easier method of analysis and tuning without the time and expense of repetitive fabrication and measurement. The most difficult part of rectenna simulation is a good diode model, and since different diodes have dissimilar properties, a model must be specific to a particular diode. Therefore, a method of modeling an individual diode is the most critical part of rectenna simulation. A diode modeling method which is based on an equivalent circuit and compatible with harmonic balance simulation is developed and presented. The equivalent circuit parameters are determined from a series of S-parameter measurements, and the final model demonstrates S-parameters in agreement with the measured data.
An aperture-coupled, high-gain, single-patch rectenna is also designed and measured. This rectenna is modeled using the presented method, and the simulation shows good agreement with the measured results. This further validates the proposed modeling technique.
|
4 |
Etude de faisabilité de la récupération d'énergie électromagnétique ambiante / Feasibility study on the recovery of ambient electromagnetic energyBouchouicha, Dhaou 22 November 2010 (has links)
L’extension des systèmes de télécommunication génère de plus en plus des ondes électromagnétiques dans notre environnement aux fréquences et puissances très variées. Le temps est venu de faire une étude approfondie sur les possibilités potentielles que nous avons d’utiliser l’énergie contenue dans les ondes électromagnétiques pour alimenter des applications électroniques. L’idée est d’utiliser une ou plusieurs antennes pour récupérer les ondes électromagnétiques disponibles, suivies par un convertisseur des signaux RF/DC. / The work of this thesis is focuse on designing, measuring and testing an antenna and rectifiercircuit (RECTENNA) optimized for incoming signals of low power density (~651W/m²). The rectenna is used to harvest the ambient electric energy from the RF signals that have been radiated by communication and broadcasting systems at (1GHz-3GHz) without matching circuit and the second is a narrow band (1.8GHz-1.9GHz) with a matching circuit between the antenna and the rectifier.
|
5 |
Contribution à l'étude de la transmission d'énergie à distance par µondes / Contribution to microwave power transmissionMerabet, Boubekeur 10 December 2010 (has links)
La transmission d’énergie sans fils (TESF) a été initiée dans les années soixante afin de répondre à des préoccupations énergétiques de tout premier ordre. Un demi-siècle plus tard, la question énergétique reste une préoccupation majeure qui ne se pose plus uniquement en termes de ressources mais également en termes d’autonomie et de portabilité. La TESF s’est adaptée à cette situation et est actuellement orientée vers le développement de structures capables de convertir des densités de puissance faibles afin d’améliorer l’autonomie des systèmes électroniques portables ou d’alimenter à distance des dispositifs électroniques inaccessibles ou nomades.Le travail proposé est subdivisé en trois parties : une première partie qui traite de la conversion de puissances faibles et qui présente un circuit rectenna (rectifying antenna) mono-diode fonctionnant sur une gamme de puissance allant de 1 mW à 10 mW. Une seconde partie, traitant de la conversion de puissances importantes, basée sur un convertisseur en pont de diodes capable de convertir des puissances allant jusqu’à 200 mW, et une dernière partie dédiée à l’élévation de la puissance transmise à la charge au travers d’associations de rectenna dont nous présentons plusieurs variantes.La comparaison technologique est à la base de ce travail. En effet, les développements récents des composants CMS permettent aujourd’hui de les utiliser pour la réalisation de circuits RF fonctionnant à des fréquences allant jusqu’à plusieurs gigahertz. Nous proposons dans cette thèse plusieurs circuits basés sur cette technologie que nous comparons à une technologie intégrée qui s’impose comme une alternative aux circuits micro-rubans. Ce travail a également été l’occasion d’introduire certains principes de l’électronique de puissance dans la conception de circuits RF. / Microwave power transmission (MPT) was first presented in the 60th as a possiblesolution to the decrease of fossil energy resources. Actually, energy problematic is not only based on the finding of new resources but also in the autonomy of mobile electrical equipments.The recent MPT researches focused in this second point and several converters were developedfor transmitting low level power at low distances.Three types of circuits were developed in this work: first one is mono-diode rectenna that converts power from 1 mW to 10 mW. The second type is a bridge based rectenna, which converts RF power up to 200 mW. The third type is an association of rectenna circuits that permits an increase of DC power.This work presents a comparison between two technologies: SMC technology, which the recent developments make its use in RF applications possible, and integrated technology witch is more and more used as an alternative to micro-strip line technology. Also, this work introduces power electronics concepts in rectenna design.
|
6 |
Rektifikační anténa / Rectifying antennaMakarov, Vitalii January 2015 (has links)
This Master´s thesis describes different methods of wireless transmitting of energy: electromagnetic induction, electrostatic induction, laser radiation, transfer of energy by microwaves. This thesis is focused on wireless transfer of energy by microwaves. The paper describes the individual parts of the rectenna. Comparison of different types of antennas for use in the rectenna was made. In this thesis is described set of requirements for design of rectenna. Was made design of the rectenna and its simulation.
|
7 |
Antennas and Metamaterials for Electromagnetic Energy HarvestingAlmoneef, Thamer 03 August 2012 (has links)
The emergence of microwave energy harvesting systems, commonly referred to as rectenna or Wireless Power Transfer (WPT) systems, has enabled numerous applications in many areas since their primary goal is to recycle the ambient microwave energy. In such systems, microstrip antennas are used as the main source for collecting the electromagnetic energy.
In this work, a novel collector based on metamaterial particles, in what is known as a Split Ring Resonator (SRR), to harvest electromagnetic energy is presented. Such collectors are much smaller in size and more efficient than existing collectors (antennas). A feasibility study of SRRs to harvest electromagnetic energy is conducted using a full wave simulator (HFSS). To prove the concept, a 5.8 GHz SRR is designed and fabricated and then tested using a power source, an Infiniium oscilloscope and a commercially available patch antenna array. When excited by a plane wave with an H-field normal to the structure, a voltage build up of 611 mV is measured across a surface mount resistive load inserted in the gap of a single loop SRR. In addition, a new efficiency concept is introduced, taking into account the microwave-to-AC conversion efficiency which is missing from earlier work. Finally, a 9X9 SRR array is compared with a 2X2 patch antenna array, both placed in a fixed footprint. The simulation results show that the array of SRRs can harvest electromagnetic energy more efficiently and over a wider bandwidth range.
|
8 |
Microwave and millimeter-wave rectifying circuit arrays and ultra-wideband antennas for wireless power transmission and communicationsRen, Yu-Jiun 15 May 2009 (has links)
In the future, space solar power transmission and wireless power transmission will
play an important role in gathering clean and infinite energy from space. The rectenna,
i.e., a rectifying circuit combined with an antenna, is one of the most important
components in the wireless power transmission system. To obtain high power and high
output voltage, the use of a large rectenna array is necessary.
Many novel rectennas and rectenna arrays for microwave and millimeter-wave
wireless power transmission have been developed. Unlike the traditional rectifying
circuit using a single diode, dual diodes are used to double the DC output voltage with
the same circuit layout dimensions. The rectenna components are then combined to form
rectenna arrays using different interconnections. The rectennas and the arrays are
analyzed by using a linear circuit model. Furthermore, to precisely align the mainbeams
of the transmitter and the receiver, a retrodirective array is developed to maintain high
efficiency. The retrodirective array is able to track the incident wave and resend the
signal to where it came from without any prior known information of the source location. The ultra-wideband radio has become one of the most important communication
systems because of demand for high data-rate transmission. Hence, ultra-wideband
antennas have received much attention in mobile wireless communications. Planar
monopole ultra-wideband antennas for UHF, microwave, and millimeter-wave bands are
developed, with many advantages such as simple structure, low cost, light weight, and
ease of fabrication. Due to the planar structures, the ultra-wideband antennas can be
easily integrated with other circuits. On the other hand, with an ultra-wide bandwidth,
source power can be transmitted at different frequencies dependent on power availability.
Furthermore, the ultra-wideband antenna can potentially handle wireless power
transmission and data communications simultaneously. The technologies developed can
also be applied to dual-frequency or the multi-frequency antennas.
In this dissertation, many new rectenna arrays, retrodirective rectenna arrays, and
ultra-wideband antennas are presented for microwave and millimeter-wave applications.
The technologies are not only very useful for wireless power transmission and
communication systems, but also they could have many applications in future radar,
surveillance, and remote sensing systems.
|
9 |
Antennas and Metamaterials for Electromagnetic Energy HarvestingAlmoneef, Thamer 03 August 2012 (has links)
The emergence of microwave energy harvesting systems, commonly referred to as rectenna or Wireless Power Transfer (WPT) systems, has enabled numerous applications in many areas since their primary goal is to recycle the ambient microwave energy. In such systems, microstrip antennas are used as the main source for collecting the electromagnetic energy.
In this work, a novel collector based on metamaterial particles, in what is known as a Split Ring Resonator (SRR), to harvest electromagnetic energy is presented. Such collectors are much smaller in size and more efficient than existing collectors (antennas). A feasibility study of SRRs to harvest electromagnetic energy is conducted using a full wave simulator (HFSS). To prove the concept, a 5.8 GHz SRR is designed and fabricated and then tested using a power source, an Infiniium oscilloscope and a commercially available patch antenna array. When excited by a plane wave with an H-field normal to the structure, a voltage build up of 611 mV is measured across a surface mount resistive load inserted in the gap of a single loop SRR. In addition, a new efficiency concept is introduced, taking into account the microwave-to-AC conversion efficiency which is missing from earlier work. Finally, a 9X9 SRR array is compared with a 2X2 patch antenna array, both placed in a fixed footprint. The simulation results show that the array of SRRs can harvest electromagnetic energy more efficiently and over a wider bandwidth range.
|
10 |
Nano Antenna Integrated Diode (Rectenna) For Infrared Energy HarvestingGadalla, Mena N. 01 1900 (has links)
In this work full parametric analysis of nano antennas is presented. To begin with, optical or electronic properties of noble metals such as gold and copper were studied in details to get a clear understanding of their reaction to an incident electromagnetic wave. Complex frequency dependent dielectric functions indicated that in THz metals acts as a dielectric with significant absorption. Simultaneous optimization of the length and the bow angle of a bow-tie antenna resulted in relative electric field intensity enhancement of 8 orders of magnitude for 0.5nm gap and 4 orders of magnitude for 50nm around 28THz resonance frequency. These results are at least 2 orders of magnitude greater than the published optical antennas. Physical reasons behind field localization and intensity enhancement are discussed in details. The solution of Maxwell’s equations at
the interface between metallic nano antenna and air is also present in this piece of research. The derived dispersion relation of surface plasmons shows momentum matching at 28.3 THz between free propagating electromagnetic fields’ modes in air and localized modes at the interface. Consequently, Propagating electromagnetic waves are ensured to couple to localized surface propagating modes producing filed enhancement. The integrated SiO2 matching section is theoretically proven to increase transmission to substrate to 75% (compared to 40% without it) which in turn improves the coupled power by 40 times. Nano antennas were fabricated in house using Electron beam lithography with a precise gap of 50nm. In addition, THz diode was designed, fabricated and integrated to the nano antennas to rectify the enhanced THz signal. The integration of the nano diode required a precise overlap of the two arms of the antenna in the rage of 100nm. In order to overcome two arms overlap fabrication challenges, three layer alignment technique was used to produce precise overlap.The THz rectifier was electrically tested and shown high sensitivity and rectification ability without any bias. Finally, nano antenna integrated diode is under optical testing using a 10.6μm Co2 laser at Electro-Optics Lab, Prince Sultan Advanced Technologies Research Institute (PSATRI), King Saud University due to the unavailability of the measurement setup in KAUST.
|
Page generated in 0.0643 seconds