Spelling suggestions: "subject:"antenna""
41 |
Développements de circuits Rectennae bi-polarisation, bi-bande pour la récupération et conversion d’énergie électromagnétique à faible niveau / Dual-polarized and dual-band Rectennas for low level energy harvestingHaboubi, Walid 18 December 2014 (has links)
L'amélioration de l'autonomie énergétique des systèmes communicants constitue aujourd'hui une des préoccupations majeures pour leur déploiement massif dans notre environnement. On souhaite rendre complètement autonome ces dispositifs électroniques (on pense entre autres aux capteurs et réseaux de capteurs) en s'affranchissant des sources d'énergie embarquées qui nécessitent des opérations de remplacement ou de recharge périodiques. Parmi les sources d'énergie disponibles qui peuvent être exploitées, on trouve les ondes électromagnétiques. Le dispositif qui permet de capter cette énergie et la convertir en puissance continue utile est dénommé Rectenna (Rectifying antenna) qui associe une antenne de captation à un circuit de rectification à base de diodes. Les rectennae ont fait l'objet d'un nombre important de communications dans la littérature ces dernières années avec pour fil conducteur, la recherche de performances optimales compte tenu de l'atténuation des ondes électromagnétiques et des faibles niveaux de champ récupérés. C'est dans ce contexte que s'est déroulé ce travail de thèse dont le financement a été assuré par un contrat ANR (REC-EM).Dans ce travail, on s'est attaché à développer, à concevoir et à caractériser expérimentalement des structures planaires qui présentent des propriétés intéressantes :- En terme de polarisations orthogonales, ceci de façon à s'affranchir de l'orientation arbitraire de l'onde incidente à la rectenna. Une rectenna à double polarisation circulaire à 2.45 GHz et à double accès sera réalisée pour, de plus, s'affranchir de la perte de 3 dB lorsque l'onde récupérée est à polarisation linéaire à orientation arbitraire.- En termes de résonances multiples, ceci pour augmenter le niveau de puissance récupérée par l'antenne et optimiser la puissance continue convertie. Une rectenna à double fréquence (1.8 et 2.45 GHz) et à accès unique sera conçue ainsi qu'une rectenna constituée d'un réseau de deux antennes double fréquence.- En terme de réduction de taille en s'affranchissant de l'utilisation du filtre HF entre l'antenne et le circuit de conversion ceci pour l'ensemble des structures rectennae développées dans ce travail. Dans tous les cas, il sera nécessaire de développer le circuit de rectification le plus adapté à la topologie de l'antenne de captation et évaluer la technique de recombinaison optimale coté DC pour s'affranchir au mieux des déséquilibres qui peuvent apparaître entre les voies d'accès de l'antenne. Pour contenir les dimensions de la structure globale, des circuits mono diode seront dimensionnés et réalisés pour chacune des structures. Enfin, on exploitera l'antenne à double polarisation circulaire double accès, dont on cherchera à diminuer les dimensions, pour alimenter un capteur de température à affichage LCD. Pour augmenter le niveau de tension nécessaire au fonctionnement du capteur, nous associerons entre la rectenna et le capteur un convertisseur DC-DC. Il s'agit, dans ce cas, d'un dispositif de gestion d'énergie adapté pour les faibles puissances. Deux convertisseurs seront employés dont celui développé par les laboratoires Ampère de l'Ecole Centrale de Lyon et SATIE à l'ENS Cachan. Ce convertisseur a fait l'objet d'une thèse également financée par l'ANR dans le cadre de ce contrat REC-EM / Improving energy autonomy of communication systems constitutes one of the major concerns for their massive deployment in our environment. We want to make these electronic devices (sensors and sensor networks) completely autonomous, avoiding the embedded energy sources that require replacement operations or periodic charging. Among the available energy sources that can be harvested, there are electromagnetic waves. The device that can capture this energy and convert it into useful DC power is called Rectenna (Rectifying antenna), combining antenna with diode-based rectifier. In recent few years, rectennas have reached a significant number of papers in the literature. The main challenge consists in improving performances in term of efficiency, in an attempt to overcome the electromagnetic wave attenuation and the low available field level. According to this context, this PhD work supported by the ANR project REC-EM has taken place. In this study, we have developed, designed and characterized planar structures that have interesting properties:- In term of orthogonal polarizations, so energy harvesting becomes feasable regardless the arbitrary orientation of the incident wave on the rectenna. A dual-circularly polarized rectenna at 2.45 GHz with dual-access will be set up to overcome the 3 dB power loss in the case of linearly-polarized incident wave with unknown orientation.- In term of multiple resonances, so the amount of total RF power collected by the antenna can be increased and consequently the converted DC power level can also be improved. A dual-frequency rectenna (1.8 and 2.45 GHz) with single access will be designed, as well as a rectenna based upon a dual-frequency antenna array.- In term of size compactness by avoiding the use of the HF filter between the antenna and the rectifier for all developed rectenna structures during this work. In all cases, it will be necessary to define the most suitable rectifier topology to each antenna and select, if it is appropriated, the optimum DC recombination technique to overcome the effects of RF power imbalance that may occur between the different antenna accesses. Besides, single-diode circuits will be designed and fulfilled for each structure. Finally, we will miniaturize the dual-circularly polarized dual-access antenna, and exploit it to power a LCD display temperature sensor. To enhance the DC voltage level required to activate the sensor, a DC-DC converter is inserted between the rectenna and the sensor. Such energy management device should be able to operate under low delivered DC power. Two converters will be used. The first one is developed by Ampere Lab at Ecole Centrale de Lyon and SATIE Lab at ENS Cachan. This converter was the subject of another dissertation also supported by the ANR under the REC-EM project
|
42 |
Modélisation et conception de circuits de réception complexes pour la transmission d'énergie sans fil à 2.45 GHzTakhedmit, Hakim 18 October 2010 (has links) (PDF)
Les travaux présentés dans ce mémoire s'inscrivent dans la thématique de la transmission d'énergie sans fil, appliquée à l'alimentation à distance de capteurs, de réseaux de capteurs et d'actionneurs à faible consommation. Cette étude porte sur la conception,l'optimisation, la réalisation et la mesure de circuits Rectennas (Rectifying antennas)compacts, à faible coût et à haut rendement de conversion RF-DC.Un outil d'analyse globale, basé sur la méthode des Différences Finies dans le Domaine Temporel (FDTD), a été développé et utilisé pour prédire avec précision la sortie DC des rectennas étudiées. Les résultats numériques obtenus se sont avérés plus précis et plus complets que ceux de simulations à base d'outils commerciaux. La diode Schottky a été rigoureusement modélisée, en tenant compte de ses éléments parasites et de son boîtier SOT23, et introduite dans le calcul itératif FDTD.Trois rectennas innovantes, en technologie micro-ruban, ont été développées,optimisées et caractérisées expérimentalement. Elles fonctionnent à 2.45 GHz et elles ne contiennent ni filtre d'entrée HF ni vias de retour à la masse. Des rendements supérieurs à 80% ont pu être mesurés avec une densité surfacique de puissance de l'ordre de 0.21 mW/cm²(E = 28 V/m). Une tension DC de 3.1 V a été mesurée aux bornes d'une charge optimale de1.05 k_, lorsque le niveau du champ électrique est égal à 34 V/m (0.31 mW/cm²).Des réseaux de rectennas connectées en série et en parallèle ont été développés. Les tensions et les puissances DC ont été doublées et quadruplées à l'aide de deux et de quatre éléments, respectivement.
|
43 |
Conception et caractérisation d'une Rectenna à double polarisation circulaire à 2.45 GHzHarouni, Zied 18 November 2011 (has links) (PDF)
Les travaux présentés dans ce mémoire s'inscrivent dans la thématique de la transmission d'énergie sans fil, appliquée à l'alimentation à distance de capteurs, de réseaux de capteurs et d'actionneurs à faible consommation. Cette étude porte sur la conception, la caractérisation, et la mesure d'un circuit Rectenna (Rectifying antenna) à double polarisation circulaire à 2.45 GHz, compact et à rendement de conversion RF-DC optimisé. Un outil d'analyse globale basé sur la méthode itérative a été développé et exploité pour valider la faisabilité de cette analyse. La diode Schottky a été modélisée en utilisant une impédance de surface. La rectenna à double polarisation circulaire, réalisée en technologie micro-ruban, a été validée expérimentalement. Elle est caractérisée par la rejection de la 2ème harmonique et une possibilité de recevoir les deux sens de polarisation LHCP et RHCP par l'intermédiaire de 2 accès. Le rendement mesuré avec une densité de puissance de 0.525 mW/cm² est de l'ordre de 63%, tandis que la tension DC obtenue aux bornes d'une charge optimale de 1.6 kohm est de 2.82 V
|
44 |
Energy harvesting from ambient WiFi energy : A method of harvesting and measuring ambient WiFi energyFofana, Alpha, Mossberg, Carl January 2019 (has links)
The aim of this thesis was to investigate the question of how to harvest RF energy and if we can harvest enough RF energy for it to be useful in an application. It is aimed towards sensor node applications, commonly used in a typical office environment. The WiFi band was chosen since it is omnipresent in the same environment. With the current development within wireless technology and the IoT domain the demand for low power electronic applications has increased and one of the challenges is to find efficient and sustainable ways of powering these types of devices.The best possible theoretical power content was initially calculated followed by measurements in an office. A circuit was designed containing an impedance matching network and rectifier. A measurement application was constructed using a microcontroller. Measurements were made in an office environment and the maximum harvested energy over 24 hours was 350 mJ. The energy was stored in a supercapacitor and is estimated to be enough to power a low energy sensor for about 30 seconds. A large part of the thesis is devoted to impedance matching involving calculating, simulating and experimenting to get a good result. / Med den nuvarande utvecklingen inom trådlös teknik och IoT-domänen har efterfrågan på elektroniska applikationer med låg effekt ökat och en av utmaningarna är att hitta effektiva och hållbara sätt att driva dessa typer av enheter. Syftet med detta projekt var att undersöka frågan hur vi skördar radiovågsenergi och kan vi skörda tillräckligt mycket med energi för att den ska vara användbar i en applikation. I ett typiskt kontor finns fler källor till radiovågor, däribland WiFi som antas ha en hög nyttjandegrad. Projektet valde att inrikta sig på WiFi bandet och undersöka om det går att utvinna tillräckligt med energi där.Projektet strävade efter att leverera en färdig produkt med alla ingående delar, en antenn, en likriktare, en lagringsenhet och ett matchningsnätverk för att anpassa antenn och likriktare till varandra. För att undersöka hur mycket energi som finns att skörda gjordes först beräkningar och sedan mätningar i bland annat ett typiskt kontor. Det konstaterades att det rör sig om väldigt låga nivåer och betonas att de apparater som använder WiFi klarar av att känna av signaler som är långt mycket lägre än de som krävs för att kunna utvinna energi. Detta innebär alltså att apparaterna kan kommunicera felfritt samtidigt som energiinnehållet är så lågt att det inte går att utvinna någon energi.Projektet ägnar stor del åt att optimera den impedansmatchning som måste ske mellan antenn och likriktare för att största möjliga effektutbyte ska kunna ske. Basen är ett kretskort med ett typiskt impedansnätverk och genom beräkningar, simuleringar och experiment tas en prototyp fram. För att kunna analysera resultaten används en mikrokontroller som tar de analoga värdena, omvandlar dem till digitala och skickar dem till en PC för analys.Mätningar gjordes i en kontorsmiljö och den maximala mängden energi som gick att utvinna var 350 mJ på 24 timmar. Energin lagrades i en superkondensator och bedöms vara tillräcklig för att driva en lågenergisensor i ca 30 sekunder.
|
45 |
Focalisation des ondes électromagnétiques pour la transmission d'énergie sans fil / Wireless energy transmission by focusing electromagnetic wavesIbrahim, Rony 17 November 2017 (has links)
La plupart des développements récents dans la transmission d'énergie sans fil utilisant des ondes électromagnétiques se concentre sur les systèmes de récupération de l'énergie électromagnétique par les systèmes sans fil, tels que les réseaux WiFi. Cependant, la nature intermittente et imprévisible de ces sources ambiantes rend la récupération d'énergie critique pour certaines applications. Dans ce contexte, le transfert d'énergie sans fil sur des distances considérables grâce aux micro-ondes permet le réveil à distance et l'alimentation durable des dispositifs électroniques se trouvant dans une myriade d'applications omniprésentes dans un mode de vie en évolution constante. L'alimentation d'un dispositif électronique sans fil élimine la nécessité de batterie, ce qui réduit sa taille et son coût. Les travaux présentés dans cette thèse s'inscrivent dans la thématique de la Transmission d'Énergie Sans Fil (TESF) dans les milieux intérieurs. Dans les scénarios où l'énergie est transmise volontairement par des microondes, les systèmes utilisant des ondes continues ne sont pas nécessairement les plus efficaces. L'objectif est de réaliser un système complet de TESF avec la focalisation des ondes électromagnétiques (EM) sur le récepteur afin d'augmenter le rendement du transfert énergétique global. Les études présentées durant cette thèse montrent que la technique du Retournement Temporel (RT) se trouve être optimale pour la focalisation des ondes EM. Sa mise en œuvre s'effectue en deux phases. Dans une première phase dite phase d'apprentissage, une impulsion de faible énergie est transmise par une antenne à un autre endroit du milieu. L'antenne réceptrice enregistre un signal constitué d'une succession d'impulsions retardées, plus ou moins atténuées, et liées aux réflexions dans le milieu. Dans une deuxième phase, appelée phase de focalisation, un signal de haute énergie construit à partir du retournement temporel du signal enregistré est transmis par l'une des antennes. À l'aide de cette approche, il en résulte que le signal retourné temporellement se focalise spatio-temporellement sur l'antenne réceptrice sous forme d'une onde pulsée (PW). Ces propriétés sont particulièrement importantes pour la TESF. Au niveau du circuit récepteur, la rectenna (antenne-redresseur) est le dispositif permettant de capter et convertir les PW focalisées en tension continue. Dans ce projet de recherche, une nouvelle rectenna à base des diodes Schottky avec une architecture de doubleur de courant a été conçue, développée et optimisée afin de garantir les performances optimales de conversion des PW. Des mesures expérimentales réalisées démontrent un fonctionnement très performant prédit par la procédure de conception. De plus, les performances obtenues se distinguent parfaitement vis-à-vis de résultats recensés dans l'état de l'art, ce qui fait de ces travaux une innovation. / Most recent developments in Wireless Energy Transmission (WET) using electromagnetic (EM) waves focus on designing systems to recover the electromagnetic energy lost by common wireless systems such as Wi-Fi networks. However, the intermittent and unpredictable nature of these ambient sources makes harvesting energy critical for some applications. Hence, the WET over considerable distances using microwaves appears in this context allowing the remote wake-up and wireless powering of electronic devices in a myriad of applications that are a part of the constantly evolution of the way of life. Wireless powering of an electronic device eliminates the need of the battery, which reduces its size and cost. The work presented in this thesis belong to the WET in indoor environments field. When energy is voluntarily transmitted by microwaves, systems using continuous waves are not necessarily the most efficient. The aim of this research project is to achieve a complete WET system by focusing of EM waves at the receiver in order to increase the overall energy transfer efficiency. The studies presented during this thesis show that the time reversal technique (TR) is optimal for the focusing of EM waves. The procedure is carried out in two stages. In the first stage called \textit{learning stage}, a low energy pulse is transmitted by an emitting antenna. Another antenna placed in other location in the medium receives and records a signal made of a succession of delayed pulses, more or less attenuated, and related to reflections on the environment. In a second stage called \textit{focusing stage}, a high-energy signal constructed from the time reversal of the recorded signal is transmitted by one of the antennas. Using this technique, it results that the temporally inverted signal focuses spatio-temporally on the receiving antenna in the form of a Pulsed Wave (PW). These properties are particularly important for the WET. At the receiver circuit, the \textit{rectenna} (rectifying antenna) is the device for capturing and converting focused PW to DC voltage. In this research project, we introduce a novel rectenna design based on Schottky diodes with a current-doubler topology designed, developed and optimized to ensure optimum conversion performance of PW. Experimental measurements demonstrate good performance predicted by the design procedure. Moreover, the performances obtained are perfectly distinct from those found in the state of the art, making this work an innovation in WET domain.
|
46 |
Modélisation et conception de circuits de réception complexes pour la transmission d'énergie sans fil à 2.45 GHz / Modeling and design of Rectenna Circuits for Wireless Power Transmission et 2.45 GHzTakhedmit, Hakim 18 October 2010 (has links)
Les travaux présentés dans ce mémoire s’inscrivent dans la thématique de la transmission d’énergie sans fil, appliquée à l’alimentation à distance de capteurs, de réseaux de capteurs et d’actionneurs à faible consommation. Cette étude porte sur la conception,l’optimisation, la réalisation et la mesure de circuits Rectennas (Rectifying antennas)compacts, à faible coût et à haut rendement de conversion RF-DC.Un outil d’analyse globale, basé sur la méthode des Différences Finies dans le Domaine Temporel (FDTD), a été développé et utilisé pour prédire avec précision la sortie DC des rectennas étudiées. Les résultats numériques obtenus se sont avérés plus précis et plus complets que ceux de simulations à base d’outils commerciaux. La diode Schottky a été rigoureusement modélisée, en tenant compte de ses éléments parasites et de son boîtier SOT23, et introduite dans le calcul itératif FDTD.Trois rectennas innovantes, en technologie micro-ruban, ont été développées,optimisées et caractérisées expérimentalement. Elles fonctionnent à 2.45 GHz et elles ne contiennent ni filtre d’entrée HF ni vias de retour à la masse. Des rendements supérieurs à 80% ont pu être mesurés avec une densité surfacique de puissance de l’ordre de 0.21 mW/cm²(E = 28 V/m). Une tension DC de 3.1 V a été mesurée aux bornes d’une charge optimale de1.05 k_, lorsque le niveau du champ électrique est égal à 34 V/m (0.31 mW/cm²).Des réseaux de rectennas connectées en série et en parallèle ont été développés. Les tensions et les puissances DC ont été doublées et quadruplées à l’aide de deux et de quatre éléments, respectivement. / The work presented in this thesis is included within the theme of wireless power transmission, applied to wireless powering of sensors, sensor nodes and actuators with low consumption. This study deals with the design, optimization, fabrication and experimental characterization of compact, low cost and efficient Rectennas (Rectifying antennas).A global analysis tool, based on the Finite Difference Time Domain method (FDTD),has been developed and used to predict with a good precision the DC output of studied rectennas. The packaged Schottky diode has been rigorously modeled, taking into account the parasitic elements, and included in the iterative FDTD calculation.Three new rectennas, with microstrip technology, have been developed and measured.They operate at 2.45 GHz and they don’t need neither input HF filter nor via hole connections. Efficiencies more than 80 % have been measured when the power density is 0.21mW/cm² (E = 28 V/m). An output DC voltage of about 3.1 V has been measured with anoptimal load of 1.05 k_, when the power density is equal to 0.31mW/cm² (34 V/m).Rectenna arrays, with series and parallel interconnections, have been developed and measured. Output DC voltages and powers have been doubled and quadrupled using two andfour rectenna elements, respectively.
|
Page generated in 0.0478 seconds