• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 12
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 46
  • 25
  • 21
  • 20
  • 17
  • 16
  • 16
  • 14
  • 13
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

IoTデバイスに向けたマイクロ波無線電力伝送システムの開発

田中, 勇気 26 September 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第24232号 / 工博第5060号 / 新制||工||1790(附属図書館) / 京都大学大学院工学研究科電気工学専攻 / (主査)教授 篠原 真毅, 教授 小嶋 浩嗣, 教授 山本 衛 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
12

Modélisation et réalisation d’un système de récupération d’énergie imprimé : caractérisation hyperfréquence des matériaux papiers utilisés / Design and realization of printed energy harvesting circuits : microwave characterization of paper substrates

Kharrat, Ines 15 September 2014 (has links)
Les travaux présentés dans ce mémoire s'inscrivent dans la thématique de la récupération d'énergie hyperfréquence, appliquée à la réalisation d'un circuit électronique imprimé sur papier permettant l'alimentation d'afficheurs électrochrome, ceci dans le cadre de la lutte contre la fraude. Cette étude porte plus particulièrement sur la conception, l'optimisation et la réalisation de rectennas (rectifying antennas) imprimées sur support cellulosique et réalisées avec des méthodes d'impression industrielles.La caractérisation des matériaux diélectriques (support papier) et conducteurs a été développée. L'association de la technique des lignes de transmission et de la cavité résonante a permis la caractérisation d'un substrat souple et non cuivré sur une bande de 500 MHz à 3 GHz. Le papier présente des pertes diélectriques contraignantes pour la conception de circuits en hautes fréquences. Un choix judicieux du substrat et une conception optimisée du circuit ont permis de réaliser des circuits de conversion d'énergie sur papier à l'état de l'art international.Deux rectennas compactes ont été développée, en technologie micro-ruban, optimisées et imprimées avec la méthode flexographie utilisant une unique couche d'encre conductrice. Elle fonctionne à 2.45 GHz et elles ne contiennent pas de vias de retour à la masse ni de filtre côté HF, ni de filtre côté DC. La première a été imprimée sur papier carton ondulé. Les tensions de sortie aux bornes de l'afficheur atteignent les 0.5 V pour des niveaux de puissance à l'entrée de la rectenna de l'ordre de -10 dBm. La deuxième rectenna a été imprimée sur support plastique flexible ayant 100 µm d'épaisseur afin de réaliser des rectennas 3D. Une tension DC de 1 V a été mesurée aux bornes de l'afficheur lorsqu'on approche un Smartphone fonctionnant en mode Wi-Fi. Les rectennas réalisées sont adaptées à la fois pour le champ proche et lointain. / The work presented in this thesis is part of microwave energy harvesting theme, applied to supply electrochromic displays for anti-counterfeiting applications. This study focuses on the design, optimization and implementation of rectennas (rectifying antennas) printed on cellulosic substrates with industrial printing techniques.Characterization of dielectric materials (paper) and conductors has been developed. The combination between the transmission line technique and the resonant cavity allowed the characterization of a flexible and copper free substrate over a wideband (500 MHz to 3 GHz). Dielectric losses of paper are too high to perform HF circuits. A wise choice of the substrate and of the optimization technique for circuit design enables performant rectennas.Two compact rectennas were developed in microstrip technology at 2.45 GHz, optimized and printed with flexography method using a single layer of conductive ink. The rectennas do not contain vias or HF side filter or DC side filter. The first rectenna was printed on corrugated paper. The output DC voltage across the display reaches 0.5 V for a power level at the input of the rectenna of -10 dBm. The second rectenna is a 3D rectenna, printed on flexible 100 µm thick plastic substrate. A DC voltage of 1 V was measured across the display when getting near a Smartphone on Wi-Fi mode. The rectennas are suitable for both near field and far field.
13

Conception et réalisation d'un nouveau transpondeur DSRC à faible consommation / Design and implementation of a new low-power consumption DSRC transponder

Franciscatto, Bruno 09 July 2014 (has links)
Afin d'augmenter l'efficacité et la sécurité du trafic routier, de nouveaux concepts et technologies ont été développés depuis 1992 en Europe pour les applications RTTT (Road Traffic & Transport Telematics). Ces applications utilisent les équipements DSRC qui supportent les transmissions à courte distance à 5.8GHz. Vues la fiabilité et le succès de cette technologie, l'utilisation de ces équipements est ensuite étendue aux ETC (Electronic Toll Collection) ou Télépéage et aussi dans une multitude d'autres domaines d'application comme la gestion des flottes, le transport public et la gestion des parkings. Le système DSRC se compose d'un émetteur/récepteur (lecteur) et des transpondeurs (badges). En toute logique, l'approche industrielle oriente les développements vers la technologie de transpondeur semi passif qui, pour réémettre un signal utilise le signal transmis par l'émetteur–récepteur, effectue une modulation de phase d'une sous porteuse fréquentielle encodant ainsi les données à transmettre. Cette conception évite l'utilisation des oscillateurs locaux, comme dans les transpondeurs actifs, pour générer l'onde Radio Fréquence (RF). Ceci permet de produire des transpondeurs relativement à faible coût et de petite taille. Cependant ce concept nécessite quand même une batterie au Lithium pour assurer le fonctionnement du transpondeur pour une durée de 4 à 6 ans et ce malgré les progrès des technologies de circuits intégrés à faible consommation. Au fur et à mesure de l'expansion de ces équipements, il s'avère qu'avec les années la quantité des batteries au lithium à détruire deviendrait un problème crucial pour l'environnement. Aujourd'hui, la conception d'un transpondeur DSRC complètement autonome n'est pas faisable, car la quantité d'énergie nécessaire s'avère encore élevée (mode actif 8 mA/3.6 V). Néanmoins, la réduction de la consommation électrique du transpondeur, permet au moins doubler la durée de vie de la batterie et pourrait être un bon point de départ pour améliorer la protection de l'environnement.Dans cette thèse, nous proposons un nouveau transpondeur DSRC avec un diagramme d'état original qui réduit considérablement la consommation énergétique. Après validation d'un nouvel état de fonctionnement en mode très faible consommation d'énergie, nous avons étudié la possibilité de recharger la batterie du transpondeur à travers de la récupération d'énergie sans fil. Le bilan de liaison énergétique DSRC a été réalisé afin d'estimer la quantité d'énergie disponible quand une voiture avec un transpondeur passe à sous un système de péage. Toutefois, le bilan énergétique à 5.8 GHz présente une faible densité d'énergie RF, puisque la voiture ne reste pas assez sur le lobe de l'antenne DSRC afin de procéder à la récupération d'énergie. Par conséquent, nous avons alors exploré une autre fréquence ISM, le 2.45 GHz dans laquelle la présence d'émetteurs est bien plus grande. Dans le chapitre de récupération d'énergie sans fil nous présentons la conception et l'optimisation d'un nouveau récupérateur d'énergie RF. Après avoir démontré qu'une charge RF-DC optimale est nécessaire afin d'atteindre une haute efficacité de conversion RF-DC. Plusieurs redresseurs et rectennas ont été conçus pour valider les études numériques. Parmi, les résultats présentés dans cette thèse les rendement de conversion obtenus sont à l'état de l'art de la récupération d'énergie sans fil pour une très faible densité de puissance disponible. / To increase the efficiency and safety of the road traffic, new concepts and technologies have been developed in Europe since 1992 for RTTT applications (Road Traffic & Transport Telematics). These applications use the Dedicated Short Range Communications (DSRC) devices at 5.8 GHz (ISM band). In view of the reliability and success of this technology, the use of such equipment is thus extended to the EFC (Electronic Fee Collection) or e-toll and also in many other application areas such as fleet management, public transport and parking management. Due to the broad applications, these equipments are subject to various standards CEN/TC 278, CEN ENV (EN) 12253, ETSI, etc.... The DSRC system consists in a transceiver (reader) and transponders (tags). Industrial approaches are oriented to semi-passive transponder technology, which uses the same signal sent by the reader to retransmit, performing a frequency shift and encoding data to be transmitted. This design avoids the use of the local oscillators to generate the RF wave, as in active transponders, and save electrical energy of batteries. This allows the development of relatively low cost and small size transponders. Despite advances in integrated low-power circuits technology, this concept still requires a lithium battery to operate the transponder for a period of 4-6 years. However, with the expansion of these facilities, it appears that over the years the amount of lithium to destroy has become a crucial problem for the environment. Nowadays designing a completely autonomous DSRC transponder is not feasible, since the amount of energy required is still high (8 mA/3.6 V active mode). Nevertheless, reducing the transponder electrical power consumption, as a solution to at least double the battery life, could be a good start point to improve environment protection.In this thesis we propose a new DSRC transponder with an original statechart that considerably reduces the power consumption. After validation of the new low-power consumption mode, we studied the possibility to recharge the battery of the transponder by means of Wireless Energy Harvesting. The DSRC Toll Collection RF link budget was carried out in order to estimate the amount of energy available when a car with a transponder passes through a toll system. However, RF link budget at 5.8 GHz presents a low power density, since the car does not stay enough on the DSRC antenna's field to proceed to energy harvesting. Therefore we explored another ISM frequency, the 2.45 GHz. Thus the Wireless Energy Harvesting chapter aims to further the state of the art through the design and optimization of a novel RF harvesting board design. We demonstrated that an optimum RF-DC load is required in order to achieve high RF-DC conversion efficiency. Several rectifiers and rectennas were prototyped in order to validate the numerical studies. Finally, the results obtained in this thesis are in the forefront of the State-of-the-Art of Wireless Energy Harvesting for very low available power density.
14

Conception et réalisation de rectenna en technologie guide d'onde coplanaire pour de faibles niveaux de puissance / Conception and realization of rectenna in coplanar waveguide technology for low power levels

Rivière, Jérôme 16 September 2016 (has links)
Le sujet de thèse abordé dans ce mémoire s'inscrit dans la thématique du LE²P sur l'autonomie énergétique des réseaux de capteurs. Ce travail est axé sur la partie réception et redressement du transfert de l'énergie sans fil pour l'apport d'énergie à des capteurs nomades. Ce procédé n'est pas nouveau et prend son origine dans les années 1950. Les connaissances dans l'appréhension de ce processus sont nombreuses pour certains guides d'onde tels que le microruban. Mais la nécessité de perçages dans ces structures de guide d'onde peut être contraignante et causer des disparités dans une chaîne de construction. Ceci a motivé les travaux présentés dans ce mémoire qui utilise une technologie de guide d'onde coplanaire (CPW) peu exploitée. Ainsi, la conception d'un tel dispositif passe par la maîtrise d'un point de vue conceptuel et expérimental de cette technologie. La démarche consiste à utiliser ce guide d'onde coplanaire en minimisant les effets négatifs que peut engendrer ce dernier, pour s'abroger du besoin de perçage et faciliter la réalisation des dispositifs de redressement en limitant le nombre d'interactions humaines. / The thesis subject dealt in this report lies in the LE²P framework on the energy sustainability of wireless sensor network. This work is dedicated to the reception and rectifying part of wireless power transfer to give energy sustainability to nodes in a sensor network. This process is not new and originate from the years 1950. The behavior of this process is since well-known in several waveguide such technology as microstrip. But the need of drill in those waveguide circuit may be inconvenient and lead to discrepancy from one circuit to another. This was the motivational keystone to the work address in this report which uses coplanar waveguide (CPW) over microstrip. The conception of such devices goes through a good conceptual and experimental understanding of the waveguide technology. The approach in this document consists of using coplanar waveguide while minimizing its drawbacks, in order to avoid drilling in the substrate and ease the realization of the rectifying part by limiting the human interaction.
15

Conception d'un dispositif de récupération d'énergie mixte vibratoire-électromagnétique pour l'alimentation des dispositifs à faible consommation / design of a device for Energy Harvesting from vibrations-electromagnetic

Saddi, Zied 15 December 2016 (has links)
L’alimentation des systèmes communicants à partir des sources d’énergies existantes dans l’environnement est une solution pertinente pour prolonger leur autonomie énergétique. Cela peut permettre de s’affranchir des sources d’énergie embarquées comme les piles et les batteries, qui présentent une durée de vie limitée, nécessite un remplacement périodique et un coût de recyclage. Parmi les sources d’énergies récupérables, les ondes électromagnétiques et les vibrations mécaniques sont considérées parmi les plus prometteuses en raison de leur disponibilité notamment dans les milieux urbains. Notre contribution porte sur l’étude et la réalisation d’un dispositif de récupération d’énergie vibratoire par transduction électrostatique. Ce type de système, basé sur une variation de capacité, nécessite une tension de pré-charge provenant d’une source auxiliaire. Afin d’éviter les matériaux piézoélectriques et les électrets caractérisés par une durée de vie limité, la phase d’initialisation a été assurée par une rectenna (Rectifying antenna).Deux rectennas ont été développées pour assurer la pré-charge du transducteur électrostatique. Une première structure bi-bande (2.45 GHz et 1.8 GHz) basée sur un anneau hybride a été proposée. Elle permet, non seulement d’augmenter la puissance RF captée, mais aussi de simplifier les problèmes d’adaptation. Une tension de 320 mV et un rendement de 40.6 % ont été mesurés, respectivement pour des densités surfaciques de puissance de 1.13 et 1.87 µW/cm2 aux fréquences 1.85 et 2.45 GHz. Une deuxième structure élévatrice de tension en topologie Cockcroft-Walton a été conçue et caractérisée expérimentalement. Une tension de 1.06 V a été mesurée pour une densité surfacique de puissance de 1.55 µW/cm².Un dispositif de récupération d’énergie mixte électromagnétique vibratoire complet a été par la suite étudié, conçu et caractérisé expérimentalement. Le transducteur électrostatique a été couplé à un circuit de conditionnement de Bennet pré-chargé par la rectenna. Une tension de 23 V a été obtenue à la sortie du système pour une tension de pré-charge de 0.5 V (1.55 µW/cm²) et à partir d’une vibration mécanique de fréquence 25 Hz et une accélération 1.5g.Une modélisation du transducteur électrostatique adaptée à différentes structures a été proposée. En se basant sur les équivalences mécaniques électriques, un modèle électrique équivalent est déduit en utilisant le logiciel LTspice de façon à étudier le comportement du système et prévoir la tension et la puissance récupérée.Mots clés : récupération d’énergie, rectenna, antenne microruban, circuit de conversion RF-DC, transducteur électrostatique, circuit de conditionnement de Bennet, modélisation / Energy harvesting is an attractive solution to power supply low-power electronics and wireless communication devices avoiding the use of power sources like batteries which have a limited life, requires periodic replacements and have a cost of recycling. Among the available ambient energy sources, electromagnetic waves and mechanical vibrations are the most suitable because of their availability particularly in the urban areas. Our contribution focuses on the study and implementation of a vibrational energy harvesting device using the electrostatic transduction. This system, based on a capacitance modulation, requires a voltage pre-charge given by an auxiliary source. To avoid electret or piezoelectric materials characterized by a limited lifetime, the initialization step was provided by a rectenna (Rectifying antenna).A new structure of dual-band rectenna (2.45 GHz and 1.8 GHz) based on a hybrid ring has been proposed. It allows to increase the received RF power but also to simplify the matching circuit. It experimentally achieves 320 mV voltage and 40 % efficiency when the power densities are 1.13 and 1.87 mW/cm2 at 1.85 and 2.45 GHz, respectively. A Cockcroft-Walton voltage multiplier rectenna was also designed and experimentally characterized. A voltage of 1.06 V was measured at a power density of 1.55 mW/cm².A macro-scale electrostatic vibration harvester (e-VEH), wirelessly pre-charged with a 2.45 GHz Cockcroft-Walton rectenna, was studied, designed and experimentally characterized. The e-VEH uses the Bennet doubler as conditioning circuit. A voltage of 23 V across the transducer terminal has been measured when the vibration harvester is excited at 25 Hz and 1,5g of external acceleration. An energy of 275 µJ and a maximum power of 0.4 µW are available across the load. ‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬A lumped element model of the electrostatic transducer has been proposed. Based on mechanical/electrical equivalent equations, an equivalent electrical circuit is derived using the LTspice simulator to study the behavior of the system and provide the voltage and the power converted.Keywords: Energy harvesting, rectenna, microstrip antenna, RF-to-dc converter, electrostatic transduction, Bennet’s doubler, modélization
16

Conception et réalisation de rectennas utilisées pour la récupération d'énergie électromagnétique pour l'alimentation de réseaux de capteurs sans fils / Design of rectennas for electromagnetic energy harvesting in order to supply autonomous wireless sensors

Okba, Abderrahim 20 December 2017 (has links)
L'électronique a connu une évolution incontestable ces dernières années. Les progrès réalisés, notamment dans l'électronique numérique et l'intégration des circuits, ont abouti à des systèmes plus performants, miniatures et à faible consommation énergétique. Les évolutions technologiques, alliant les avancées de l'informatique et des technologies numériques et leur intégration de plus en plus poussée au sein d'objets multiples, ont permis le développement d'un nouveau paradigme de systèmes qualifiés de systèmes cyber-physiques. Ces systèmes sont massivement déployés de nos jours grâce à l'expansion des applications liées à l'Internet Des Objets (IDO). Les systèmes cyber-physiques s'appuient, entre autre, sur le déploiement massif de capteurs communicants sans fil autonomes, ceux-ci présentent plusieurs avantages : * Flexibilité dans le choix de l'emplacement. Ils permettent l'accès à des zones dangereuses ou difficiles d'accès. * Affranchissement des câbles qui présentent un poids, un encombrement et un coût supplémentaire. * Elimination des problèmes relatifs aux câbles (usure, étanchéité...) * Facilité de déploiement de réseaux de capteurs Cependant, ces capteurs sans fils nécessitent une autonomie énergétique afin de fonctionner. Les techniques conventionnelles telles que les batteries ou les piles, n'assurent le fonctionnement des capteurs que pour une durée limitée et nécessitent un changement périodique. Ceci présente un obstacle dans le cas où les capteurs sans fils sont placés dans un endroit où l'accès est impossible. Il est donc nécessaire de trouver un autre moyen d'approvisionner l'énergie de façon permanente à ces réseaux de capteurs sans fil. L'intégration et la miniaturisation des systèmes électroniques ont permis la réalisation de systèmes à faible consommation, ce qui a fait apparaître d'autres techniques en termes d'apports énergétiques. Parmi ces possibilités se trouvent la récupération d'énergie électromagnétique et le transfert d'énergie sans fil (TESF). En effet, l'énergie électromagnétique est de nos jours, omniprésente sur notre planète, l'utiliser donc comme source d'énergie pour les systèmes électroniques semble être une idée plausible et réalisable. Cette thèse s'inscrit dans ce cadre, elle a pour objectif la conception et la fabrication de systèmes de récupération d'énergie électromagnétique pour l'alimentation de réseaux de capteurs sans fil. Le circuit de récupération d'énergie électromagnétique est appelé " Rectenna ", ce mot est l'association de deux entités qui sont " antenne " et " rectifier " qui désigne en anglais le " redresseur ". L'antenne permet de récupérer l'énergie électromagnétique ambiante et le redresseur la convertit en un signal continu (DC) qui servira par la suite à alimenter les capteurs sans fil. Dans ce manuscrit, plusieurs rectennas seront présentées, pour des fréquences allant des bandes GSM 868MHz, 915MHz, passant par l'UMTS à 2GHZ et WIFI à 2,45GHz, et allant jusqu'aux bandes Ku et Ka. / The electronic domain has known a significant expansion the last decades, all the advancements made has led to the development of miniature and efficient electronic devices used in many applications such as cyber physical systems. These systems use low-power wireless sensors for: detection, monitoring and so on. The use of wireless sensors has many advantages: * The flexibility of their location, they allow the access to hazardous areas. * The realization of lighter system, less expensive and less cumbersome. * The elimination of all the problems associated to the cables (erosion, impermeability...) * The deployment of sensor arrays. Therefore, these wireless sensors need to be supplied somehow with energy to be able to function properly. The classic ways of supplying energy such as batteries have some drawbacks, they are limited in energy and must be replaced periodically, and this is not conceivable for applications where the wireless sensor is placed in hazardous places or in places where the access is impossible. So, it is necessary to find another way to permanently provide energy to these wireless sensors. The integration and miniaturization of the electronic devices has led to low power consumption systems, which opens a way to another techniques in terms of providing energy. Amongst the possibilities, we can find the Wireless Power Transfer (WPT) and Energy Harvesting (EH). In fact, the electromagnetic energy is nowadays highly available in our planet thanks to all the applications that use wireless systems. We can take advantage of this massive available quantity of energy and use it to power-up the low power wireless sensors. This thesis is incorporated within the framework of WPT and EH. Its objective is the conception and realization of electromagnetic energy harvesters called "Rectenna" in order to supply energy to low power wireless sensors. The term "rectenna" is the combination of two words: Antenna and Rectifier. The Antenna is the module that captures the electromagnetic ambient energy and converts it to a RF signal, the rectifier is the RF circuit that converts this RF signal into a continuous (DC) signal that is used to supply the wireless sensors. In this manuscript, several rectennas will be presented, for different frequencies going from the GSM frequencies (868 MHz, 915 MHz) to the Ku/Ka bands.
17

Dispositif conformable de récupération d'énergie radiofréquence : vers l'autonomie des objets communicants / Development of rectenna on flexible and semi-rigid substrates for autonomous sensors

Berges, Romain 12 July 2018 (has links)
Parmi les principaux verrous à lever pour la mise en place de l’IoT, l’un des plus difficiles concerne l’autonomie des objets. Il est en effet difficilement concevable, vu le grand nombre de composants déployés, d’intervenir sur chacun pour remplacer, ou recharger, leur batterie. Dans ce contexte ma thèse a pour objectif de proposer des solutions éco-énergétique afin de rendre tout ou partie autonome des objets communicants, type capteur. Une des solutions est de développer des récupérateurs d’énergie radiofréquences fonctionnant aux fréquences dans la bande ISM, 900 MHz et/ou 2,4 GHz. Grâce aux modules de récupération d’énergie le capteur pourra fonctionner sur une période théoriquement illimitée, grâce à un module de stockage d’énergie embarqué rechargeable. En pratique, la fiabilité de l’élément de stockage définira le temps de vie du capteur, estimé à une vingtaine d’années avec les cellules de stockage rechargeables actuelles. Les solutions existantes dans le commerce sont presque exclusivement développées sur substrat époxy (ou dérivé). Cette solution est généralement robuste et performante. En revanche la rigidité mécanique du substrat réduit l’intégration des nœuds dans notre environnement, elle devient rédhibitoire dans le cas des réseaux corporels. Afin de permettre au capteur autonome de s’intégrer plus facilement, et d’adresser notamment des applications de type biomédicales, celui-ci sera développé sur substrat souple. Cet objectif pose certains défis quant à la maitrise des procédés de fabrication et de report des composants pour les performances des parties radiofréquences / Electronics has undergone an unquestionable evolution in recent years. The progress made gives more efficient circuits and smaller, but especially more and more energy efficient. This evolution, combined with advances in the digital and IT domain, has enabled the expansion of Internet of Things (IoT) applications based on the massive deployment of autonomous wireless communicating sensors. The first generations of sensor could only work during the time of discharge of their battery. One of the proposed ways to extend the autonomy of objects is to use the ambient energy. Several technologies have been developed to optimize the energy harvesting depending on the environment of the sensor. The work of this thesis allows developing RF energy harvesters in three steps. The first part studies antennas structures compatible with the energy harvesting. Each antenna is optimized to either recover more energy or better integrate into the environment. The second step focuses on the RF / DC conversion circuit. The study of different circuits architectures, diodes and number of stages potentially relevant for our application, allowed realising circuits able to work with our antennas. Each circuit was then optimized to increase its conversion efficiency and its sensitivity. The final step was to assemble an antenna with a rectifier to characterize the complete harvester according two different scenarios: opportunistic energy harvesting and energy transfer conditions.
18

Thin Film Metal-Insulator-Metal Tunnel Junctions For Millimeter Wave Detection

Krishnan, Subramanian 29 October 2008 (has links)
Millimeter wave imaging systems are the next generation imaging systems being developed for security and surveillance purposes. In this work, thin film metal-insulator-metal (MIM) tunnel junction based detector using Ni-NiO-Cr has been developed for the first time for millimeter wave detection operating at 94 GHz. Extensive process development has been carried out to fabricate the MIM junctions. Arrays of MIM junctions with 1 µm² contact area and ultra-thin insulator layer of ~3 nanometer have been developed using e-beam lithography and reactive sputtering, respectively. MIM diodes were also fabricated in a bulk-micromachined diaphragm configuration to minimize surface wave loss. DC and millimeter wave measurements were carried out on the fabricated diodes to determine the device characteristics and performance. The current-voltage (I-V) measurements yielded current in the range of few µA with significant non-linearity and asymmetry. A maximum sensitivity of 7 V-1 was also obtained from the fabricated diode. These tunnel junctions showed a positive response to millimeter wave signal, with output current in the range of few µA. By controlling the input power of the millimeter wave signal, the output current from the device could be varied. Additionally, MIM diodes with 100 µm² contact area were developed using optical lithography technique. The I-V characteristics of diode demonstrated a uniform behavior, with a sensitivity value of 15 V-1. Furthermore, the diodes were utilized to observe the effects of post-deposition annealing on the diode I-V behavior. The I-V measurement provided evidence of diode operation up to 350°C, with optimal operation at 250°C. Finally, the feasibility of using an organic insulator was also investigated. MIM junctions were fabricated with a thin layer of polyaniline using Langmuir-Blodgett deposition process. The electrical characteristics of the polyaniline based MIM junction was determined by evaluating its I-V response. The use of an alternate dielectric proved successful, yielding a significant non-linearity and asymmetry. However, the output current obtained from these junctions was in the order of nano-Amperes. By optimizing the deposition process, the organic MIM junctions can be developed to yield better device characteristics.
19

A RECTENNA FOR 5G ENERGY HARVESTING

Efthymakis, Panagiotis 01 January 2018 (has links)
This thesis describes the design of a rectenna that is capable of operating in 5G. 5G’s availability will create the opportunity to harvest energy everywhere in the network’s coverage. This thesis investigates a Rectenna device with a new proposed topology in order to eliminate coupling between input and output lines and increase the rectification efficiency. Moreover, it is designed to charge a rechargeable battery of 3V, 1mA, with a 4.8mm diameter. The current design describes using one antenna for energy harvesting; this could be expanded to use an antenna array, which would increase the input power. This would lead to higher output currents, leading to the ability to efficiently charge a wide variety of batteries. Because of its small size, the rectenna could be used for the remote charging of an implantable sensor battery or for other applications where miniaturization is a design consideration.
20

Design, Fabrication and Characterization of Thin-Film M-I-M Diodes for Rectenna Array

Krishnan, Subramanian 26 May 2004 (has links)
A Metal-Insulator-Metal (MIM) diode is a high frequency device used for energy harvesting purpose in the RECTENNA. The main objective of this thesis work is to design, fabricate and characterize a thin-film MIM diode. A key issue associated in this research work is the development MIM diode with nanometer thin insulator region. The reason for the development of MIM diode is to rectify a wide spectrum of AC signal to usable DC power. In this thesis work, a planar MIM diode with Aluminum/Aluminum-Oxide/Gold has been fabricated. The thickness of the insulator region obtained was about 3nm. The Metal and insulator depositions were done by sputtering and plasma oxidation, respectively. I-V Characteristics of the diode was measured by making use of in-house set-up and 70% of the devices on a single wafer yielded with better result. Most of the I-V curves obtained were highly non-linear and asymmetric. Based on the I-V measurement, the logarithmic derivative of I vs. V was plotted and the tunneling behavior was also observed.

Page generated in 0.0364 seconds