• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 180
  • 75
  • 42
  • 19
  • 15
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 495
  • 495
  • 254
  • 104
  • 102
  • 96
  • 90
  • 82
  • 79
  • 73
  • 72
  • 60
  • 60
  • 59
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Investigating the application of Static Synchronous Compensator (STATCOM) for mitigating power transmission line losses

Aduragba, Adebiyi Abayomi January 2017 (has links)
Submitted in fulfillment of the requirements for the degree of Master of Engineering in Electrical Power Engineering, Durban University of Technology, Durban, South Africa, 2017. / Voltage instability and increased power loss on transmission lines are major challenges in power transmission due to ever increasing load growth. This work investigates the effect of Static Synchronous Compensator (STATCOM) to mitigate power losses and enhance the voltage stability of a transmission system. STATCOM, a shunt-connected power electronic device, operate as a Voltage Source Converter (VSC) to improve power transfer capacity of transmission lines by injecting a set of three-phase balanced sinusoidal current with controllable magnitude and phase angle into the transmission lines to regulate the line voltage and compensate for reactive power at the Point of Common Coupling (PCC). To validate the capacity of STATCOM in this light, a modified model of IEEE 14 bus test system was simulated using DIgSILENT PowerFactory v15. Four different load profiles were included by increasing the base load in a step of 10%. In each case, power flow was run with and without STATCOM incorporated in the network with a view to determine the impact of STATCOM on bus voltage and transmission line losses. The simulation results are obtained were recorded and analyzed. It is noted that there was sufficient improvement in the new voltage profile obtained for the weak buses of the system, the active and reactive power losses were mitigated by 17.73% and 24.80% respectively when STATCOM was incorporated at normal load. The results showed that STATCOM could give quick voltage support to reduce the likelihood of voltage collapse and mitigate power losses along the transmission lines. Reduction of reactive power losses along the lines is higher than the active power losses resulting in the improvement of the voltage profile as the device is connected to the system. / M
162

A nonlinear optimization approach for UPFC power flow control and voltage security

Kalyani, Radha Padma, January 2007 (has links) (PDF)
Thesis (Ph. D.)--University of Missouri--Rolla, 2007. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed November 29, 2007) Includes bibliographical references.
163

Investigation of 3 terminal differential protection using standard-based numerical relays

Lwana, Mkuseli January 2017 (has links)
Thesis (MTech (Electrical Engineering))--Cape Peninsula University of Technology, 2017. / Transmission lines are a vital part of the electrical distribution system, as they provide the path to transfer power between generation and load. Factors like de-regulated market environment, economics, etc. have pushed utilities to operate transmission lines close to their operating limits. Any fault, if not detected and isolated quickly will cascade into a system wide disturbance causing widespread outages for a tightly interconnected system operating close to its limits. Current differential criterion is used with success to protect various elements in power systems, i.e. transmission lines, power transformers, generators and busbars. The alpha plane differential relaying system provides sensitive protection for transmission lines, security and dependability for external faults. This thesis focuses on three terminal alpha plane differential protection with the aim to develop a complete test method using OMICRON test universe software essentially defining security, dependability and sensitivity of the alpha plane characteristic. The research analyses the three terminal alpha plane characteristic and existing primitive test methods and develops an improved test method using IEC 61850 standard. The primitive methods are time consuming and result in unnecessary prolonged outages. These methods have been discussed and improved in the thesis by implementing IEC 61850 standard. First the standard IED Capability Description (ICD) file is modified by developing new logical nodes using AcSELerator Architect and XML Maker software. Then the developed logical nodes, three terminal differential protection alpha plane characteristic with its additional infeed/outfeed check logic, and the developed test method are tested simultaneously using Test Universe software. A laboratory test bench is built using three SEL311L relays, two CMC 356 Omicron injection devices, PC, MOXA switch, CMIRIG-B time synchronising unit, SEL 2407 satellite synchronised clock, and a DC power supplier. The test method developed in this research vindicates benefits of IEC 61850 standard over hard wired systems. Prolonged outage times due to test set preparation using hard wires are drastically reduced. The thesis findings and deliverables will be used as a solution to industrial problems, postgraduate studies of other students and research project.
164

Study on Microwave-Driven Electric Vehicle for Agriculture / マイクロ波駆動農用電気車両に関する研究

Miyasaka, Juro 24 March 2014 (has links)
Kyoto University (京都大学) / 0048 / 新制・論文博士 / 博士(農学) / 乙第12823号 / 論農博第2796号 / 新制||農||1025(附属図書館) / 学位論文||H26||N4818(農学部図書室) / 31310 / 京都大学農学研究科農業工学専攻 / (主査)教授 清水 浩, 教授 近藤 直, 教授 飯田 訓久 / 学位規則第4条第2項該当
165

A quantitative analysis of indices to assess voltage quality on an electricity transmission network

Venter, Erika 04 June 2012 (has links)
M.Phil. / Nearly every reference document, national and international standard, text book or web page discussing the topic of Power Quality has an introduction that refers to the demand from customers and regulators for better and more detailed reporting from electrical power utilities with regards power quality. Previously power quality was an internal utility measure with no external input. Today contracts are negotiated with customers and limits are set by regulators with regards Power Quality objectives. Current assessment methods defined in various international guidelines and standards recommend that for a “high percentage” of the assessment period, the measured performance must remain below specified levels (“compatibility levels” or contracted levels). In the case of NRS048-2:2008 the assessment criterion for voltage harmonics and voltage unbalance is based on 95% of the time and 95% of the space for an assessment period of 1 week, and that for voltage magnitude is based on 95% of the time and 95% of the space, with the additional requirement that no two consecutive values exceed the specified levels. A statistical research study was undertaken to analyse the performance of the Eskom transmission system in order to determine the impact of using different assessment methods (100% of the week, 99% of the week, 95% of the day etc). This thesis will present the results of the analysis done on the data in the Quality of Supply database. The analysis will mainly focus on the voltage waveform parameters: harmonic THD; unbalance; and regulation as measured in the Eskom Quality of Supply database. The objective of this thesis is to determine how the current performance of an electrical transmission network is characterised by different assessment methods. This thesis makes a contribution to the current international debate on appropriate assessment criteria and the conditions (“normal” vs. “abnormal”) under which these would apply.
166

Fuzzy logic statcom controller design with genetic algorithm application for stability enhancement of interconnected power systems

麥禮安, Mak, Lai-on. January 2000 (has links)
published_or_final_version / Electrical and Electronic Engineering / Master / Master of Philosophy
167

Improvement of power transfer in an existing power system by means of series and shunt compensation

10 March 2010 (has links)
M.Phil. / The Motraco transmission system is a classical case illustrating the increase in power transfer of a network considering the possibility of a voltage collapse. This case study was used in the dissertation to find a techno-economical solution for the Motraco system to increase the power transfer to satisfy an additional load. The Motraco power system is operating close to a voltage collapse at present. A voltage collapse will be experienced if additional load is added at the Maputo substation. The possibility of a voltage collapse can be reduced if the power transfer capability of the Motraco power system is increased. Various technologies can be used to increase the power transfer of the Motraco power system. The technologies used in this study to increase the power transfer were limited to the following: • Adding shunt capacitor banks at critical locations in the network • Adding a series capacitor bank on an existing 400 kV transmission line • Adding an additional 400 kV transmission line • Adding a series capacitor bank on the new 400 kV transmission line The correct use of the combination of the shunt capacitor banks, series capacitor bank and the new transmission line contributes to: • support voltages in the network; • reduce the transmission losses; and • increase the fault levels at the receiving end. The principles used in this dissertation can be used to increase the power transfer limit of any power system with the same characteristics.
168

Voltage uprating of existing high voltage substations when transient voltage stress and available withstand strength are coordinated

Schutte, Peet January 2017 (has links)
A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering in the High Voltage Research Group School of Electrical and Information Engineering Johannesburg, June 2017 South Africa / Servitude availability in space-constrained built-up areas within the Johannesburg or Central Load Network (CLN) poses every-day challenges for power system engineers. Strengthening the backbone 88/275 kV transmission system within the CLN becomes even more difficult when multi-circuit transmission lines are required for increased power transfer capabilities. When uprating is considered to increase the power transfer capability, the withstand levels of existing external insulation demands an optimisation to find a new stress versus strength balance that allows reliable operation of substations at higher voltages. The research includes primarily an investigative simulation study to evaluate the current Eskom available design clearances in terms of their withstand capability when subjected to over-voltage transients. Two voltage range classes were evaluated and the results are discussed. For voltage range 1, it was found that the over-voltage stress was low enough to allow for a higher nominal operating voltage while maintaining the existing clearances. For voltage range 2, existing clearances are also found to be conservative and smaller safety margins will most likely be acceptable. From a transient analysis evaluation, voltage uprating is considered as a very attractive option to increase the power transfer capability of existing substations. Current Eskom clearances for 88 kV and 275 kV are expected to perform well during transients generated in uprated systems. Electrode grading to improve the field gradients in the substation will require attention to increase gap factors. Additional surge arresters are considered to be a cost effective solution to control over-voltages throughout the whole uprated substation. The physical modification of substations to replace strung conductors with tubular conductors, ensuring sufficient outage time to refurbish and rebuild with new equipment will be the most challenging part of uprating existing substations. / MT 2017
169

Simulation study of lightning fault waveforms influenced by the arc quenching properties of wooden distribution line poles

Bredenoord, Carl Henk 23 May 2008 (has links)
Abstract With an ever increasing emphasis on reliability of supply, improvement in the lightning performance of distribution lines is required. The arc quenching properties of wooden distribution line poles during lightning strikes are an important factor in the reduction of switchgear operation, hence outages. Measurements were conducted on a 22 kV distribution line and it was suspected, in some cases, that direct lightning strikes to the line did not cause switchgear operation. Distribution lines predominantly use wooden poles with a specific configuration which incorporates a 'wooden' spark gap. This paper provides background to the basic configuration of a typical distribution line and the processes which govern the electric arc. A simulation using a dynamic arc model shows that field measured lightning overvoltages on a distribution line are reproducible through system modelling. The simplistic dynamic arc model developed is sufficiently accurate to describe a set of arcs in a larger system such as a distribution line.
170

Investigating the effects of altitude (air density) on the HVDC breakdown voltage of small rod-plane air gaps

Gora, Tatenda January 2016 (has links)
A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering, 2016 / The validity of the atmospheric correction method presented in the IEC 60060-1 (2010) standard is analysed and evaluated by means of theoretical and laboratory work. In order to understand the problem, the evolution of the atmospheric correction methods, from as early as 1914, has been presented. A procedure (Calva prediction method) for predicting the direct current (DC) breakdown voltage for an air gap at any altitude was discovered and was also analysed along with the IEC 60060-1 (2010). A critique of some of the atmospheric correction methods commonly used standards was also done. Experiments were carried out at altitudes of 1 740 m (Wits University), 130 m (UKZN HVDC centre) and at less than 2 m above sea level (Scottburgh beach, Clansthal). More tests were conducted using a pressure vessel where high altitude relative air density was simulated. All tests were conducted on rod-plane air gaps using a 15 mm diameter at tip rod. Test results from Scottburgh beach were used as the standard breakdown voltages of the air gaps tested since the environmental conditions were the closest to the conventional standard conditions (stp). The test results obtained were compared with predictions using the Calva method in order to validate the method. The test results were also corrected according to IEC 60060-1 (2010) and compared to the standard breakdown voltages obtained at Scottburgh beach. It was shown that the IEC 60060-1 (2010) is quite suitable for atmospheric correction for data obtained at low altitudes (about 130 m). When applied to high altitude (1 740 m) data, the correction method is accurate and suitable for very small air gaps less than 0.1 m. As the air gap length increased, the corrected results began to deviate from the expected standard voltage. The same trend was shown with the corrected results from the pressure chamber tests. The prediction method by Calva was accurate when compared to the experimental data from the high altitude and low altitude test results. When compared to the data from the pressure chamber, the prediction method had a linear error factor which was di erent for each gap length. It was concluded that the IEC 60060-1 (2010) is not only unsuitable for atmospheric correction for data at relative air densities below 0.8, but also that the correction method is prone to an increase in error as the air gap length increases when the relative air density is higher than 0.8. The Calva prediction method was found to be suitable to use after additional factors are added when applied to high altitude conditions. / GR2016

Page generated in 0.114 seconds