1 |
Molecular Studies on the RelA-Mediated (p)ppGpp Synthesis MechanismPayoe, Roshani Unknown Date
No description available.
|
2 |
The ribosome, stringent factor and the bacterial stringent responseJenvert, Rose-Marie January 2007 (has links)
<p>The stringent response plays a significant role in the survival of bacteria during different environmental conditions. It is activated by the binding of stringent factor (SF) to stalled ribosomes that have an unacylated tRNA in the ribosomal A-site which leads to the synthesis of (p)ppGpp. ppGpp binds to the RNA polymerase, resulting in a rapid down-regulation of rRNA and tRNA transcription and up-regulation of mRNAs coding for enzymes involved in amino acid biosynthesis. The importance of the A-site and unacylated tRNA in the activation of SF was confirmed by chemical modification and subsequent primer extension experiments (footprinting experiments) which showed that binding of SF to ribosomes resulted in the protection of regions in 23S rRNA, the A-loop and helix 89 that are involved in the binding of the A-site tRNA. An in vitro assay showed that the ribosomal protein L11 and its flexible N-terminal part was important in the activation of SF. Interestingly the N-terminal part of L11 was shown to activate SF on its own and this activation was dependent on both ribosomes and an unacylated tRNA in the A-site. The N-terminal part of L11 was suggested to mediate an interaction between ribosome-bound SF and the unacylated tRNA in the A-site or interact with SF and the unacylated tRNA independently of each other. Footprinting experiments showed that SF bound to the ribosome protected bases in the L11 binding domain of the ribosome that were not involved in an interaction with ribosomal protein L11. The sarcin/ricin loop, in close contact with the L11 binding domain on the ribosome and essential for the binding and activation of translation elongation factors was also found to be protected by the binding of SF. Altogether the presented results suggest that SF binds to the factor-binding stalk of the ribosome and that activation of SF is dependent on the flexible N-terminal domain of L11 and an interaction of SF with the unacylated tRNA in the A-site of the 50S subunit.</p>
|
3 |
The ribosome, stringent factor and the bacterial stringent responseJenvert, Rose-Marie January 2007 (has links)
The stringent response plays a significant role in the survival of bacteria during different environmental conditions. It is activated by the binding of stringent factor (SF) to stalled ribosomes that have an unacylated tRNA in the ribosomal A-site which leads to the synthesis of (p)ppGpp. ppGpp binds to the RNA polymerase, resulting in a rapid down-regulation of rRNA and tRNA transcription and up-regulation of mRNAs coding for enzymes involved in amino acid biosynthesis. The importance of the A-site and unacylated tRNA in the activation of SF was confirmed by chemical modification and subsequent primer extension experiments (footprinting experiments) which showed that binding of SF to ribosomes resulted in the protection of regions in 23S rRNA, the A-loop and helix 89 that are involved in the binding of the A-site tRNA. An in vitro assay showed that the ribosomal protein L11 and its flexible N-terminal part was important in the activation of SF. Interestingly the N-terminal part of L11 was shown to activate SF on its own and this activation was dependent on both ribosomes and an unacylated tRNA in the A-site. The N-terminal part of L11 was suggested to mediate an interaction between ribosome-bound SF and the unacylated tRNA in the A-site or interact with SF and the unacylated tRNA independently of each other. Footprinting experiments showed that SF bound to the ribosome protected bases in the L11 binding domain of the ribosome that were not involved in an interaction with ribosomal protein L11. The sarcin/ricin loop, in close contact with the L11 binding domain on the ribosome and essential for the binding and activation of translation elongation factors was also found to be protected by the binding of SF. Altogether the presented results suggest that SF binds to the factor-binding stalk of the ribosome and that activation of SF is dependent on the flexible N-terminal domain of L11 and an interaction of SF with the unacylated tRNA in the A-site of the 50S subunit.
|
4 |
Quantification des contraintes métaboliques et physiologiques liées à la surproduction de protéines recombinantes par Escherichia coli : amélioration des performances et de la robustesse du système d'expression et du procédé de production / Quantification of metabolics and physiologics contraints related to overexpression of recombinants proteins in Escherichia coli : Optimisation of performances and robustness of expression system and production processPatacq, Clement 23 October 2018 (has links)
La production de protéines hétérologues permet de développer une nouvelle génération de vaccins. La bactérie Escherichia coli est l’un des organismes hôtes les plus utilisés pour la production de protéines hétérologues, appelées également protéines recombinantes. Le déclenchement de la production de protéine altère la croissance bactérienne en réponse à la réallocation des ressources métaboliques vers la synthèse de la protéine ; ce qui peut conduire à l’arrêt complet de la croissance. Le maintien de la croissance bactérienne durant la production de la protéine recombinante est pourtant essentiel pour améliorer significativement la quantité et la fonctionnalité des protéines produites. Dans une démarche rationnelle visant à développer un système biologique robuste et performant pour la production d’une grande diversité de protéines recombinantes chez E. coli, les contraintes métaboliques liées à leur production ont été quantifiées. A partir de ces résultats, le système d’expression T7 a été intégré à la régulation métabolique et traductionnelle de la bactérie E. coli BL21 (DE3) afin d’adapter la vitesse de production avec les capacités métaboliques de la souche. Ce nouveau système biologique de production a ainsi permis d’augmenter considérablement les quantités de protéines produites et offre la possibilité de développer de nouveaux procédés performants de production semi-continus et continus en milieu chimiquement défini. / The production of heterologous proteins offers the ability to develop a new generation of vaccines. The most used organism for the production of heterologous proteins, also called recombinant proteins, is the bacterium Escherichia coli. However, the induction of the production often alleviates the bacterial growth by the new allocation of metabolic resources toward the production of the recombinant protein. Even, this may also lead to growth arrest. The production of high quantities of functional recombinant proteins requires a good balance between of bacterial growth and production of the recombinant protein.In order to rationally develop a robust and an efficient biological system for the production of a large variety of recombinant proteins in E. coli, the metabolic constraints associated to their production have been quantified. From this observation, the T7 expression system has been integrated into the metabolic and translational regulation of the E. coli BL21 (DE3) in order to adjust as perfect as possible the protein production rate to the metabolic capacities of the strain. This new biological production system has made it possible to significantly increase the quantities of proteins produced and opens up the possibility of developing performant semi-continuous and continuous production processes in a chemically defined medium.
|
5 |
(p)ppGpp and Stress Response : Decoding the Key Pathways by Small Molecule Analogues Biophysical Methods and Mass SpectrometrySyal, Kirtimaan January 2015 (has links) (PDF)
Under hostile conditions, bacteria elicit stress response. Such stress response is regulated by a secondary messenger called (p)ppGpp. (p)ppGpp is involved in wide range of functions such as GTP homeostasis, biofilm formation and cell growth. Its regulation and mode of action is not well understood. This work has been initiated with an aim to gain insights into the molecular basis of stress response. (p)ppGpp was discovered on the chromatogram of cell extract from starved E. coli cells. (p)ppGpp is synthesized and hydrolyzed by Rel/SpoT in Gram negative bacteria (such as E. coli), and by bifunctional enzyme called Rel in Gram positive bacteria (such as Mycobacteria).
The obvious question that comes in our mind is how bifunctional Rel enzyme decides on synthesis or hydrolysis in Gram positive bacteria such as Mycobacterium? In our laboratory, it has been shown that N-terminal domain of Rel shows unregulated (p)ppGpp synthesis implying regulatory role of C-terminal domain. Also, concurrent increase in anisotropy of Rel C-terminal domain with the increase in concentration of pppGpp has been observed indicating the binding of pppGpp to the C-terminal domain. We performed Isothermal Calorimetry experiment to confirm that pppGpp binds with C-terminal domain of Rel enzyme. For identification of the binding region, small molecule analogue 8-azido-pppGpp has been synthesized. This analogue is UV-crosslinked with C-terminal domain of Rel and specificity of the interaction has been determined by gel based crosslinking experiments. Crosslinked protein has been subjected to the ingel¬trypsin digestion and analyzed by mass spectrometry. We identified two crosslinked peptides in the mass spectra of trypsin digest in case of the crosslinked protein where identity of the parent peptide is confirmed by MS-MS analysis. Site directed mutagenesis has been carried out based on the conservation of residues in the crosslinked peptides. Isothermal Calorimetry analysis has been done where Rel C-terminal domain mutants are titrated with pppGpp in order to detect any defect in binding due to the mutations. Mutations leading to the reduced binding affinity of pppGpp to Rel C-terminal domain have been introduced in the full length Rel protein and activity assays are carried out so as to evaluate the effects of mutations on synthesis and hydrolysis activity. In mutants, synthesis activity is found to be increased with the concomitant reduction in hydrolysis activity. This indicates the feedback loop where pppGpp binds to Rel C-terminal domain to regulate it own synthesis and hydrolysis.
In E. coli, pppGpp binds to RNA polymerase and modulates the transcription. The region where it binds is controversial. In addition, whether ppGpp and pppGpp have different binding site on RNA polymerase is not known. The latter question becomes important in the light of evidence where differential regulation of transcription by ppGpp and pppGpp have been indicated. We found that ppGpp and pppGpp have an overlapping binding site on RNA polymerase. The 8-azido-ppGpp has been mapped on β and β’ subunits whereas binding site of 8-azido-pppGpp has been located on the β’ subunit. We observed that the 8-azido¬pppGpp labels RNA polymerase more efficiently than ppGpp. pppGpp can compete out ppGpp as illustrated by DRaCALA assay and gel based crosslinking experiment. However, the RNAP from B. subtilis does not bind to (p)ppGpp.
(p)ppGpp is ubiquitous in bacteria but absent in mammals. Thus, blocking (p)ppGpp synthesis would impede the survival of bacteria without having any effect on humans. Recently, Relacin compound has been synthesized by another group in order to inhibit (p)ppGpp synthesis. The limitations of this compound are the requirement of high concentration (5mM) for inhibition and low permeability across the membrane. Taking hints from the latter compound, we acetylated the
nd 2’, 3’ and 5’ position of ribose ring and benzoylated the 2position of guanine moiety in guanosine molecule. We observed significant inhibition of in vitro pppGpp synthesis and biofilm formation. More studies will be conducted in near future to test these compounds for their plausible functions.
In collaboration with Prof. Jayaraman (Organic Chemistry, IISc), many artificial glycolipids are synthesized and tested for biological function. We observed that synthetic glycolipids exhibit a profound effect as inhibitors of the key mycobacterial functions. These analogs impede biofilm formation and can plausibly affect long term survival. Glycolipid analogs can compete with natural glycolipids, thus may help in understanding their functions. Our past and recent studies have showed that the synthetic glycolipids act as inhibitors of mycobacterial growth, sliding motility and biofilm formation. The major lacuna of these glycolipid inhibitors is the requirement of high concentration. Their inhibitions at nanomolar concentrations remain to be achieved. Issues surrounding the thick, waxy mycobacterial cell wall structures will continue to be the focus in manifold approaches to mitigate detrimental effects of mycobacterial pathogens.
In chapter 1, introduction to the research work has been written and role of (p)ppGpp and its functions have been discussed. In chapter 2, novel binding site of pppGpp on Rel C-terminal domain and its regulatory role have been discussed. In chapter 3, differential binding of ppGpp and pppGpp to RNA polymerase has been discussed. In chapter 4, studies on natural and synthetic analogues of pppGpp have been presented. In chapter 5, synthetic glycolipids studies have been described. Chapter 6 summarizes all the chapters.
|
Page generated in 0.015 seconds